fix R8a and add R8*.md and build them

This commit is contained in:
2025-10-12 19:27:11 +09:00
parent 0a3ff3bbcb
commit 995ba47ca2
10 changed files with 335 additions and 3 deletions

94
reviews/R8c.md Normal file
View File

@@ -0,0 +1,94 @@
# Review 8-3
* Hajin Ju, 2024062806
## Problem 1
Fill in the blanks in the following LCS computation
### Solution 1
$$c[i][j] = \text{The length of an LCS of the subsequences} \,X_i\, \text{and}\, Y_j.$$
$$c[i][j] = \begin{cases}
0 & \text{if}\, i = 0 \,\text{or}\, j = 0\\
c[i-1][j-1] + 1 &\text{if}\, i,j > 0 \,\text{and}\, x_i = y_j\\
max(c[i][j-1], c[i-1][j]) &\text{if}\, i, j > 0 \,\text{and}\, x_i \neq y_j
\end{cases}$$
| * | $y_j$ | $B$ | $D$ | $C$ | $A$ | $B$ | $A$ |
| ----- | ----- | ------------ | ------------- | ------------- | -------------- | -------------- | -------------- |
| $x_i$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $A$ | 0 | $\uparrow 0$ | $\uparrow 0$ | $\uparrow 0$ | $\nwarrow 1$ | $\leftarrow 1$ | $\nwarrow 1$ |
| $B$ | 0 | $\nwarrow1$ | $\leftarrow1$ | $\leftarrow1$ | $\uparrow 1$ | $\nwarrow 2$ | $\leftarrow 2$ |
| $C$ | 0 | $\uparrow 1$ | $\uparrow 1$ | $\nwarrow 2$ | $\leftarrow 2$ | $\uparrow 2$ | $\uparrow 2$ |
| $B$ | 0 | $\nwarrow 1$ | $\uparrow 1$ | $\uparrow 2$ | $\uparrow2$ | $\nwarrow3$ | $\leftarrow3$ |
| $D$ | 0 | $\uparrow1$ | $\nwarrow2$ | $\uparrow2$ | $\uparrow2$ | $\uparrow3$ | $\uparrow3$ |
| $A$ | 0 | $\uparrow1$ | $\uparrow2$ | $\uparrow2$ | $\nwarrow 3$ | $\uparrow 3$ | $\nwarrow4$ |
| $B$ | 0 | $\nwarrow1$ | $\uparrow2$ | $\uparrow2$ | $\uparrow3$ | $\nwarrow4$ | $\uparrow4$ |
## Problem 2
Fill in the blanks in the following multiple LCS computation.
### Solution 2
| * | $y_j$ | $B$ | $D$ | $C$ | $A$ | $B$ | $A$ |
| ----- | ----- | ---------------------- | ---------------------- | ---------------------- | ---------------------- | ---------------------- | ---------------------- |
| $x_i$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $A$ | 0 | $\leftarrow\uparrow 0$ | $\leftarrow\uparrow 0$ | $\leftarrow\uparrow 0$ | $\nwarrow 1$ | $\leftarrow 1$ | $\nwarrow 1$ |
| $B$ | 0 | $\nwarrow1$ | $\leftarrow1$ | $\leftarrow1$ | $\leftarrow\uparrow 1$ | $\nwarrow 2$ | $\leftarrow 2$ |
| $C$ | 0 | $\uparrow 1$ | $\leftarrow\uparrow 1$ | $\nwarrow 2$ | $\leftarrow 2$ | $\leftarrow\uparrow 2$ | $\leftarrow\uparrow 2$ |
| $B$ | 0 | $\nwarrow 1$ | $\leftarrow\uparrow 1$ | $\uparrow 2$ | $\uparrow2$ | $\nwarrow3$ | $\leftarrow3$ |
| $D$ | 0 | $\uparrow1$ | $\nwarrow2$ | $\leftarrow\uparrow2$ | $\uparrow2$ | $\uparrow3$ | $\uparrow3$ |
| $A$ | 0 | $\uparrow1$ | $\uparrow2$ | $\uparrow2$ | $\nwarrow 3$ | $\leftarrow\uparrow 3$ | $\nwarrow4$ |
| $B$ | 0 | $\nwarrow1$ | $\uparrow2$ | $\leftarrow\uparrow2$ | $\uparrow3$ | $\nwarrow4$ | $\leftarrow\uparrow4$ |
## Problem 3
Fill in the blanks in the following pseudocode for `LCS-LENGTH`.
### Solution 3
```text
LCS-LENGTH(X, Y)
m = X.length
n = Y.length
let b[1..m, 1..n] and c[1..m, 1..n] be new tables
for i = 1 to m
c[i][0] = 0
for j = 1 to n
c[0][j] = 0
for i = 1 to m
for j = 1 to n
if X[i] = Y[j]
c[i][j] = c[i - 1][j - 1] + 1
b[i][j] = \nwarrow
else if c[i-1][j] >= c[i][j-1]
c[i][j] = c[i-1][j]
b[i][j] = \uparrow
else
c[i][j] = c[i][j-1]
b[i][j] = \leftarrow
return c, b
```
## Problem 4
Fill in the blanks in the following pseudocode for `PRINT-LCS`.
### Solution 4
```text
PRINT-LCS(b, X, i, j)
if i = 0 or j = 0
return
if b[i][j] == \nwarrow
PRINT-LCS(b, X, i-1, j)
print X[i]
else if b[i][j] == \uparrow
PRINT-LCS(b, X, i-1, j)
else
PRINT-LCS(b, X, i, j-1)
```