update and rebuild at 9.21
This commit is contained in:
32
reviews/R4-2.md
Normal file
32
reviews/R4-2.md
Normal file
@@ -0,0 +1,32 @@
|
||||
# Review 4-2
|
||||
|
||||
* Hajin Ju, 2024062806
|
||||
|
||||
## Problem 1
|
||||
|
||||
Guess the solution to the recurrence $T(n) = T(n/3) + T(2n/3) + cn$, where $c$ is constant, is $\Theta(n\lg n) by applealing to a recursion tree.$
|
||||
|
||||
### Solution 1
|
||||
|
||||
* level 0
|
||||
$\Sigma = cn$
|
||||
* level 1
|
||||
$\Sigma = cn/3 + 2cn/3 = cn$
|
||||
* level 2
|
||||
$\Sigma = cn/9 + 2cn/9 + 2cn/9 + 4cn/9 = cn$
|
||||
* level k
|
||||
$\Sigma = cn$
|
||||
* level h
|
||||
$\Sigma = cn$
|
||||
|
||||
The shortest depth $n\to 1$ is $h = \lg_{3/2}{n}$
|
||||
The longest depth $n\to 1$ is $h = \lg_{3}{n}$
|
||||
|
||||
so $T(n) = \text{depth} * cn$ and
|
||||
|
||||
$cn \lg_{3/2}{n} \leq T(n) \leq cn \lg_{3}{n} $
|
||||
|
||||
therefore $T(n) = \Theta(n\lg n)$
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user