Review 3

• Hajin Ju, 2024062806

Problem 1

Write o if an entry is true or x otherwise.

Solution 1

	$O(n \lg n)$	$\Omega(n\lg n)$	$\Theta(n \lg n)$
$\lg n$	O	X	X
n	O	X	X
$n \lg n$	O	О	О
$n\lg^2 n$	X	O	X
n^2	X	O	X

Problem 2

Show $3n+1=O(n^2)$ by the definition of O.

Solution 2

A function f(n)=O(g(n)) if there exist constants $c\geq 0$ and $n_0\geq 0$, s.t.

$$n \ge n_0 \Rightarrow \le |f(n)| \le c|g(n)|$$

let
$$g(n)=n^2$$

let $f(n)=3n+1$
suppose $c=4,\ n_0=1$
and then, for all $n\geq 1 o |3n+1|\leq 4n^2$

therefore, $3n + 1 = O(n^2)$ by the above definition.

Problem 3

Write asymptotic notations that satisfy each relation and explain why.

- 1. Transitivity
- 2. Reflexivity
- 3. Symmetry

Solution 3

- 1. Transitivity
- O is transitive because f(n) = O(g(n)) and g(n) = O(h(n)) implies f(n) = O(h(n))there must exists $n_0 \geq 0$, s.t. $n \geq n_0 \Rightarrow f(n) \leq c_0 g(n) \leq c_1 c_0 h(n)$
- Ω is transitive because $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ implies $f(n) = \Omega(h(n))$ there must exists $n_0 \geq 0$, s.t. $n \geq n_0 \Rightarrow f(n) \geq c_0 g(n) \geq c_1 c_0 h(n)$
- Θ is transitive because $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ implies $f(n) = \Theta(h(n))$ $f(n) = O(h(n)) \wedge f(n) = \Omega(h(n))$
- 2. Reflexivity
- O is reflexive because f(n) = O(f(n)) where c = 1
- Ω is reflexive because $f(n) = \Omega(f(n))$ where c=1
- Θ is reflexive

• because $f(n) = \Theta(f(n))$

3. Symmetry

• *O* is **not** symmetric

because
$$f(n)=O(g(n))$$
 does not imply $g(n)=O(g(n))$ for example, $n=O(n^2)$ cannot imply $n^2=O(n)$

• Ω is **not** symmetric

because
$$f(n)=\Omega(g(n))$$
 does not imply $g(n)=\Omega(g(n))$ for example, $n^2=\Omega(n)$ cannot imply $n=\Omega(n^2)$

ullet Θ is symmetric

because
$$f(n) = \Theta(g(n))$$
 implies $g(n) = \Theta(g(n))$