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Instruction Scheduling

* There are some opportunities to improve the performance
using scheduling and reordering

* The instruction scheduling should not affect the functionality

* We cannot reschedule all the instructions due to the
dependencies
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CPU Microarchitecture (Superscalar)

Load: 1 Cycle

| | : Store: 1 Cycle
Pipe A >ALU D-cache 0
Reg Reg
PC—ll-cache| | File 2 File
Read Write
> >
Pipe B ALU .
| 1"—»/ ALUOp: 1 Cycl:le
2 X 2 X 2 X
fetch A read A Li;c A A write
bandwidth ports ports
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ILP: Instruction-level parallelism

 ILP is the parallel or simultaneous execution of a sequence of
instructions
— Inter-dependent instructions cannot be executed in parallel

* Program ILP = Avg. # of instructions / Cycle (step)

— How many instructions are simultaneously executed in parallel

codel: code2:

addi  $rix_ $r2, 1 addi $ri1, $r2, 1

divi $r3; 1, 17 divi $r3, $r9, 17
sub $r4:\‘§£6?\‘$r3 sub  $r4, $ro, $rie
Max ILP = 1 (execute serially) Max ILP = 3 (execute parallel)
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Pipeline + SuperScalar

¢ Pipelining: executing multiple instructions in parallel

- Operation latency = 1
- Peak IPC =1
- HW ILP = # of instructions / # of cycles required = 1

Inst, | IF || ID |EX]|| M [{WB

Inst, IF || ID [|EX|| M |{WB

Inst, IF || ID || EX|| M [|WB

Inst; IF{| ID EX|| M [|WB
Inst, IF || ID |EX|| M [|WB
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Pipeline + SuperScalar

» Superscalar (+ pipelined) execution
— Operation latency = 1 baseline cycle
— Peak IPC = N per baseline cycle
- HW ILP = # of instructions / # of cycles required = N

t@ tl t2 t3 t4 t5 t6 t7 t8 t9 tl@ tll t12 »

Inst, LIFILIDJ[EX|[ M ]| WB ]

Inst, LIFIIIDJ[EX|[ M ]| WB ]

Inst, [IFJIIDJ[EX|[ M ]| WB ]

Inst, [IF |[ID][EXJ[ M |{ wB |

Inst, [IF |[IDJ[EX][ M |{ wB |

Inst. [IF |[IDJ[EX][ M |{ wB |

Inst, LIFI[IDJIEXI[ M I{wB |

Inst, LIFI[IDJIEX ][ M I{wB |

Losts | IF U ID [ EX [ .M ]| WB |
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Hazards in the dual-issue CPU

* More instructions are executed in parallel
« EX data hazard
— Can’t use ALU result in load/store in same packet

Slot0{ add $te, $s0, $sl
Slot 1{ load $s2, 0($t0)

* Load-use hazard
— Still one cycle use latency

Slot 0{ load $te, @($se) ? 1 cycle stall
Slot1{add $t2, $te, $si
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Hazards in the dual-issue CPU

* It also suffers from false dependencies

* Write after write hazard
— The two packed instructions cannot write to the same register

load $t0, 0($s0)
add $te, $t1, $s1
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Scheduling Constraints

« Resource Constraints

— Processors have finite number of resources - Limits on how these
resources can be used together
 Fixed issue width (4 ~ 8 instructions)
« Limited functional units per given instruction type
 Limited pipelining with a given functional unit (division?)

* Program Constraints (Dependence, Precedence ...)

— There are ordering relationships in the program
« Dependence #1: Data Dependence
* Dependence #2: Control Dependence

— There are aggressive scheduling techniques to overcome the dependency
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Inst,
Inst,
Inst,

Inst;
Inst,
Inst,
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Finite Issue Width

* In a superscalar machine - we cannot issue more than N
different instructions within a cycle

t@ tl t2 t3 t4 t5

IF || ID || EX || M WB

IF || ID || EX || M WB

IF || ID || EX || M WB
IF || ID || EX M WB
IF || ID || EX M WB
IF || ID || EX M WB

Superscalar Parallelism

Operation Latency: 1
Issuing Rate: N

Superscalar Degree: N
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Limited FUs per Inst. Type

 We cannot issue an instruction for a given functional unit if it is
fully utilized

— EX) 4-way superscalar with 2 integer units, 1 memory units, and 1 floating-
point units

B INT [ MEM FLOAT $ r
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Limited FUs per Inst. Type

* Another requirement: A floating-point operation takes two
cycles

B INT [ MEM FLOAT

B Y F Y . $
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Scheduling Constraints

e Resource Constraints

— Processors have finite number of resources - Limits on how these
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* Program Constraints (Dependence, Precedence ...)

— There are ordering relationships in the program
« Dependence #1: Data Dependence
* Dependence #2: Control Dependence

— There are aggressive scheduling techniques to overcome the dependency
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Dependencies Limit Parallelization

 We cannot execute consecutive instructions in parallel upon
control and data dependencies

Data Dependency Control Dependency
Parallel [z = z + 1 Parallel |z = z + 1
Group |x =y + 1 Group |x =y + 1
w=Xx * 10 if (cc)
W=w+ 1
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Control Dependence

 We cannot parallelize instructions when there is a control
dependence
—We cannot move instruction inside the branch b = a * a

Parallel [z = 7z + 1
Group (x =y + 1
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Overcoming Control Dependence - 1

» Speculative code motion

— Move control-dependent instruction ahead of a branch so that it can be
executed speculatively in a parallel group

Parallel d L g o Parallel d - d+ 1
Group Group |, - 5 * 3
if (a > t ) then { jl>
b = 3 * 3 if (a >t ) then){
} b = 3 X 3
c =a+d b is dead }
after branch |c = a + d
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Overcoming Control Dependence - 2

« Speculative code motion w/ correction
— This is not applicable to store operations (no speculative store)

Parallel |-
Group d=d+ 1 Parallel |4 - 4 + 1
Group b’ = 3 * 3
if ( a > t ) then { >
b=a*a if ( a > t ) then){
} b= g* 3
c=a+b b =0b’
b is live i - a2+ b
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Speculative Code Motion Summary

» Speculative code motion

— Move control-dependent instruction ahead of a branch so that it can be
executed speculatively in a parallel group

» Effectiveness of speculation
- Branch taken: GOOD
— Branch not-taken: Nothing to lose
— This should be done to exploit underutilized resources

* Correctness Problem
— Liveness, Exception (e.g., division), Permanency (e.g., store)
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Data Dependence

* Must maintain the order of accesses to the same locations
— True dependence: write - read
— Anti dependence: read - write
— Qutput dependence: write - write

 We cannot move instructions if there is a data dependence

ri=r4 + r5
rz =r1+1
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False Data Dependence

 We can rename registers using copies
— Remove data dependence (false dependence) and move the instructions

ri=r4 + r5
Parallel |r1 = r4 + r5 Parallel
Group |.. Group .15 = r3 _ 2
rZ =rl+1 :I|> r2=ri1+1
ri=r3 - 2 ri = r1’
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True Data Dependence

 We can rename registers using copies
— Perform forward substitution to mitigate true dependencies

r2 ri + 1

rl ll: r3

rz2 + 1 r2

r3 rl
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Basic Block Scheduling

» Basic block scheduling
— List scheduling
— Interaction between register allocation and scheduling

* Global scheduling

— Cross-block code scheduling

» Software pipelining
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Virtual CPU Model

* All registers are read at the beginning of a cycle = and are
written at the end of a cycle

« Example: The following two instructions can be executed in
parallel
load r2 o(rl)
add rl r3, r4
— Load will use an old value (before it is written by add)
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List Scheduling

* The most common technique: scheduling instructions within a
basic block

—We do not care about control flow ... {eevered-later)
 We care about ... data dependences and hardware resources

* This is an NP-hard problem ®
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List Scheduling - 1

* Input:
— Data Precedence Graph (DPG): The graph structure of the instructions
according to the dependences between instructions

- Machine Parameters: The available resources and execution latency ...

* Output:

— The scheduled instruction code (grouped together to maximize the
performance)
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List Scheduling - 2

* There is a list to keep the list of ready instructions
— Req #1. All the operands are ready to execute (and no false dependences)
— Req #2. The target resources are available

* Iteratively conduct scheduling in a cycle-by-cycle manner
— Choose target instructions from the list allocate
— Update the list and iterate over the same procedure again

Target List HE W

ow] FOEE
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Key Challenge

* There is a problem when there are multiple ready instructions,
but we do not have enough resources

Target List Target List

! Contentlon;
¥ ¢

iofia]  [i] <=
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Data Precedence Graph (DPG) - 1

- Data dependence graph:
—nodes: instructions
— edges: data dependence constraints

9: a =1

1: £ = 3 + x| Add: 2 Cycles
2: b = 7 Others: 1 Cycle
3: ¢ =9

4. g =1t + b

5: d =13

6: e = 19 Ij‘>

7: h=Ff + c

8: Jj=d+y

9: z = -1

10: j L1
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Data Precedence Graph (DPG) - 2

* There are two types of edges in the DPG
— True dependency
— False dependency

W NERO®
N X < X
X N X B

@

* Q1. Should we treat the RAW and WAR
dependency separately?

True
Dep.

False
Dep.

* Q2. What about WAW dependency?

— This should be removed after dead code
elimination (within a basic block!)

Wil N e ke ®
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Determining Priorities in Contention

* Let’s assume that everything is true dependences
* Priority: latency-weighted depth

priority(x) = latency (x) = max(x,y)EE(PT lority (}’))
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Determining Priorities in Contention

 Now consider the exact effect of the anti-dependences

— We can schedule two anti-dependent instruction at once (instead of waiting
for the predecessor)

priority(x) = max(latency (x) = max(x,y)eg(pTiOTity(Y)),
max, ,yeg' (Priority(y)))
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List Scheduling Algorithm

cycle = ©
ready-1list = root nodes in DPG // Indicates the ready list
inflight-list = {} // Indicates the executing instructions (at the pipeline)

while (ready-list or inflight-1list not empty) { What is there is a tie?
for op = (all nodes in ready-1list in|decreasing priority order) {
if (an FU exists for op to start at cycle) {
remove op from ready-list and add to inflight-1list
add op to schedule at time cycle
if (op has an outgoing anti-edge)
add all targets of op’s anti-edges that are ready to ready-list

}
}
cycle = cycle + 1
for op = (all nodes in inflight-1list)
if (op finishes at time cycle) {
remove op from inflight-list
check nodes waiting for op & add to ready-list if all operands available

}
]
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Discussions on Breaking Ties

- o Break ties by lower
priority(x) = max(latency(x) + max(y yyeg (priority(y)), instruction number

max, y)eg' (Priority(y))) Ready List

e, 2,35 6,9
1, 3, 5, 6, 9
5, 6, 9
4, 7, 8, 9
8, 9

Add takes two cycles;
Others take one cycles

444044

10
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Discussions on Breaking Ties

priority(x) = max(latency(x) + maxy ez (priority(y)), What about this?
max g’ (Priority(y))) Ready List
e, 2,3 5,6,09
1, 3, 5, 6, 9
3, 6, 8, 9
4, 6, 7, 9
6, 9

4 44404

10

Add takes two cycles;
Others take one cycles
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Alternative Approach

* Scheduling from backwards ...
— Schedule the finish times instead of the start times

Forward Scheduling Backward Scheduling
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Backward List Scheduling

* Reverse the direction of edges & schedule the finish time
* This can be randomly good or bad ...

- 9, 5
- 1, 3
- 2, 3, 8
- 4, 7, 8
Add takes two cycles; - 6, 9
Others take one cycles & 10
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List Scheduling (Forward Scheduling)
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Assume pipelined HW

38

1 cyc 2 cyc | 3 cyc

(%] 9
1 10

2 5 15
3 6

4 7 11

8 12

13

14

16

e
w

e
I

e

16

9, 10
10
15




List Scheduling (Backward Scheduling)
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Assume pipelined HW

39

1 cyc

4

2 cyc

3 cyc

15

3
2
1
%)

14

il |N|]o | O

13

12

11

10

16

4
3, 4, 9
2, 3, 8

1, 2, 7, 15

0, 6, 14, 15
5, 13, 14, 15
12, 13, 14, 15
11, 12, 13, 14, 15
10
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Advanced Approaches
 RBF scheduling:

— Schedule beach block M times forward and backward
— Break ties randomly for each trial
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Basic Block Scheduling

» Basic block scheduling
— List scheduling
— Interaction between register allocation and scheduling

* Global scheduling

— Cross-block code scheduling

Soff o olins
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Global Scheduling Example

 Machine Model:
— Fully-pipelined execution path

« LD takes two cycles + Others take one cycle 1w r@ o(r5) nop
— Two parallel general-execution path nop nop
begz ro, L nop
—
lw rl 0(r6) nop
nop nop
sw o(r7), ri nop
1w r2 0(r8) ) nop
nop nop
add r2 r2 r2 nop
sw 0(r8) r2 nop
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Basic Features

» Control equivalence: If i1 and i2 are control equivalent 2 if i1 is
executed if and only if i2 is executed

» Speculation: An instruction is speculatively executed if it is
executed before all the control-dependent instructions have
been executed

=>» As long as there are (1) no side-effects, (2) no exception, (3) does not
violative data dependence
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Code Motion

* Goal: Probabilistically reduce the execution time based on the
frequency of the execution

* There are two different options:
— You may either move the instructions downwards to successor basic blocks

— You may also move the instructions upwards to predecessor basic
blocks

Problem: to where and how to move the instructions?
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Global Scheduling Basics

* Schedule innermost loops first:
— The instructions should escape from the most executed basic blocks

* Apply upward code-motion to the following two options:
— Non-speculative: A control-equivalent block
— Speculative: A control-equivalent block of a dominating predecessor
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Scheduling Algorithm

Compute data dependences;
For each B in BB list in R (in topological order w/o back edge) {
CandInsts = ready instructions in NonSpeculative(B) U Speculative(B)
// All the incoming dependences have already been scheduled
For t slots until all the instructions in B has been scheduled {
For n in CandInsts in priority order {
// Prioritize non-speculative over speculative
if (ok to move n to B &% n has no resource conflicts @t) {
// OK: do not speculatively move exception & store ..
// Same as the List Scheduling
Schedule the inst to (B, t)
Update resource commitments & dependences

¥
¥

Update CandInsts // some insts may become ready!

ﬁ}
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Scheduling Example

 Machine Model:
— Fully-pipelined execution path B1

il | 1w re o(r5) nop

« LD takes two cycles + Others take one cycle

— Two parallel general-execution path - beqznoppe - :ZE 55
* Priority order: B1, B2, B3 B | DorEowe) | nop
« Control equivalence: {B1, B3}, {B2} - e(”";’) 1 nop
] B3 1 SW r/7), r nop
 Non-speculative(B1) = {B1, B3} ST e o
» Speculative(B1) = {B2} nop nop
i6 add r2 r2 r2 nop
« Candidates = {|1, |3, |5} i7 sw 9(r8) r2 nop
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Scheduling Example
(1)/ Bt \ B1

il | 1w re o(r5) nop lw re o(r5) lw r2 0(r8)
nop <~ nop lw rl 0(r6) nop
i2 beqz ro@, L ||y nop beqz ro, L add r2 r2 r2
@ B2 B2
i3 lw rl 0(ré6) nop w1l 0{r6e) nop
nop nop Rop Rop
i4 sw 0(r7), ri nop sw 0(r7), ri nop
@ i5 lw r2 0(r8) nop Iw—+r2-8(r8) nop
nop nop ROP ROP
i6 add r2 r2 r2 nop add—r2—r2—+r2 nop
i7 sw 0(r8) r2 nop sw 0(r8) r2 nop
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Unrolling and Instruction Scheduling - 1

 Assumption:
— Two general purpose pipelines
- (mem + alu take two cycles) & (branch & copy take one cycle)

* Unrolling enables a new scheduling opportunities

¥ 1
1: add r@ ro 1
2: load rl 0(ro) 2
3: add rl1 r1 1
4: store rl 0(ro) 3
5: bne rl O Loop
4 5
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Unrolling and Instruction Scheduling - 2

¥

vidwWNBR

:add ro ro 1
: load rl 0(ro)
cradd rl1 rl1 1

store rl 0(ro)

: beq rl 0 Exit

¥

vibhbwnnNnBR

:add ro ro 1

load rl1 0(ro)

cadd rl1 rl 1

store rl 0(ro)

: beq rl 0 Exit

A 4

A 4

vih wpN -

: add ro ro 1
: load rl 0(ro)
:add rl1 r1 1

store rl 0(ro)

: bne rl O Loop
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: add r2 ro 1

: load r3 o(r2)
:add r3 r3 1

: store r3 o(r2)

10: mv ro r2
11: mv rl r3
12: bne rl 0 Loop

Register renaming
to remove false
dependencies




Unrolling and Instruction Scheduling - 2

:
1: add ro ro 1 1: add re ro 1 -
2: load rl 0(ro)
3: add r1 r1 1 2: load r1 o(ro) 6: add r2 ro 1
4: store rl 0(ro) 190: mv ro r2
5: beq rl @ Exit 3: add r1 r1 1 | 7: load r3 0(r2)
v 4: store rl 0(r@) | 5: beq rl 0 Exit
6: add r2 ro 1 8: add r3 r3 1
7: load r3 0(r2)
8: add r3 r3 1 11: mv rl r3 9: store r3 0(r2)
9: store r3 0(r2) 12: bne rl 0 Loop
10: mv ro r2 o
11: mv rl r3 0
12: bne rl 0 Loop
|
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