12. Instruction Scheduling

2025 Fall
Hunjun Lee
Hanyang University

Fall 2025 Hunjun Lee

Instruction Scheduling

* There are some opportunities to improve the performance
using scheduling and reordering

* The instruction scheduling should not affect the functionality

* We cannot reschedule all the instructions due to the
dependencies

Fall 2025 Hunjun Lee 2

CPU Microarchitecture (Superscalar)

Load: 1 Cycle

| | : Store: 1 Cycle
Pipe A >ALU D-cache 0
Reg Reg
PC—ll-cache| | File 2 File
Read Write
> >
Pipe B ALU .
| 1"—»/ ALUOp: 1 Cycl:le
2 X 2 X 2 X
fetch A read A Li;c A A write
bandwidth ports ports

Fall 2025 Hunjun Lee 3

ILP: Instruction-level parallelism

 ILP is the parallel or simultaneous execution of a sequence of
instructions
— Inter-dependent instructions cannot be executed in parallel

* Program ILP = Avg. # of instructions / Cycle (step)

— How many instructions are simultaneously executed in parallel

codel: code2:

addi $rix_ $r2, 1 addi $ri1, $r2, 1

divi $r3; 1, 17 divi $r3, $r9, 17
sub $r4:\‘§£6?\‘$r3 sub $r4, $ro, $rie
Max ILP = 1 (execute serially) Max ILP = 3 (execute parallel)

Fall 2025 Hunjun Lee 4

Pipeline + SuperScalar

¢ Pipelining: executing multiple instructions in parallel

- Operation latency = 1
- Peak IPC =1
- HW ILP = # of instructions / # of cycles required = 1

Inst, | IF || ID |EX]|| M [{WB

Inst, IF || ID [|EX|| M |{WB

Inst, IF || ID || EX|| M [|WB

Inst; IF{| ID EX|| M [|WB
Inst, IF || ID |EX|| M [|WB

Fall 2025 Hunjun Lee S

Pipeline + SuperScalar

» Superscalar (+ pipelined) execution
— Operation latency = 1 baseline cycle
— Peak IPC = N per baseline cycle
- HW ILP = # of instructions / # of cycles required = N

t@ tl t2 t3 t4 t5 t6 t7 t8 t9 tl@ tll t12 »

Inst, LIFILIDJ[EX|[M]| WB]

Inst, LIFIIIDJ[EX|[M]| WB]

Inst, [IFJIIDJ[EX|[M]| WB]

Inst, [IF |[ID][EXJ[M |{ wB |

Inst, [IF |[IDJ[EX][M |{ wB |

Inst. [IF |[IDJ[EX][M |{ wB |

Inst, LIFI[IDJIEXI[M I{wB |

Inst, LIFI[IDJIEX][M I{wB |

Losts | IF U ID [EX [.M]| WB |

Fall 2025 Hunjun Lee 6

Hazards in the dual-issue CPU

* More instructions are executed in parallel
« EX data hazard
— Can’t use ALU result in load/store in same packet

Slot0{ add $te, $s0, $sl
Slot 1{ load $s2, 0($t0)

* Load-use hazard
— Still one cycle use latency

Slot 0{ load $te, @($se) ? 1 cycle stall
Slot1{add $t2, $te, $si

Fall 2025 Hunjun Lee 7

Hazards in the dual-issue CPU

* It also suffers from false dependencies

* Write after write hazard
— The two packed instructions cannot write to the same register

load $t0, 0($s0)
add $te, $t1, $s1

Fall 2025 Hunjun Lee 8

Scheduling Constraints

« Resource Constraints

— Processors have finite number of resources - Limits on how these
resources can be used together
 Fixed issue width (4 ~ 8 instructions)
« Limited functional units per given instruction type
 Limited pipelining with a given functional unit (division?)

* Program Constraints (Dependence, Precedence ...)

— There are ordering relationships in the program
« Dependence #1: Data Dependence
* Dependence #2: Control Dependence

— There are aggressive scheduling techniques to overcome the dependency

Fall 2025 Hunjun Lee 9

Scheduling Constraints

* Resource Constraints

— Processors have finite number of resources - Limits on how these
resources can be used together
» Fixed issue width (4 ~ 8 instructions)
 Limited functional units per given instruction type
 Limited pipelining with a given functional unit (division?)

* Program Constraints (Dependence, Precedence ...)

— There are ordering relationships in the program
« Dependence #1: Data Dependence
« Dependence #2: Control Dependence

— There are aggressive scheduling techniques to overcome the dependency

Fall 2025 Hunjun Lee 10

Inst,
Inst,
Inst,

Inst;
Inst,
Inst,

Fall 2025 Hunjun Lee

Finite Issue Width

* In a superscalar machine - we cannot issue more than N
different instructions within a cycle

t@ tl t2 t3 t4 t5

IF || ID || EX || M WB

IF || ID || EX || M WB

IF || ID || EX || M WB
IF || ID || EX M WB
IF || ID || EX M WB
IF || ID || EX M WB

Superscalar Parallelism

Operation Latency: 1
Issuing Rate: N

Superscalar Degree: N

11

Limited FUs per Inst. Type

 We cannot issue an instruction for a given functional unit if it is
fully utilized

— EX) 4-way superscalar with 2 integer units, 1 memory units, and 1 floating-
point units

B INT [MEM FLOAT $ r

Fall 2025 Hunjun Lee 12

Limited FUs per Inst. Type

* Another requirement: A floating-point operation takes two
cycles

B INT [MEM FLOAT

B Y F Y . $

Fall 2025 Hunjun Lee 13

Scheduling Constraints

e Resource Constraints

— Processors have finite number of resources - Limits on how these
resources can be used together
 Fixed issue width (4 ~ 8 instructions)
« Limited functional units per given instruction type
 Limited pipelining with a given functional unit (division?)

* Program Constraints (Dependence, Precedence ...)

— There are ordering relationships in the program
« Dependence #1: Data Dependence
* Dependence #2: Control Dependence

— There are aggressive scheduling techniques to overcome the dependency

Fall 2025 Hunjun Lee 14

Dependencies Limit Parallelization

 We cannot execute consecutive instructions in parallel upon
control and data dependencies

Data Dependency Control Dependency
Parallel [z = z + 1 Parallel |z = z + 1
Group |x =y + 1 Group |x =y + 1
w=Xx * 10 if (cc)
W=w+ 1

Fall 2025 Hunjun Lee 15

Control Dependence

 We cannot parallelize instructions when there is a control
dependence
—We cannot move instruction inside the branch b = a * a

Parallel [z = 7z + 1
Group (x =y + 1

Fall 2025 Hunjun Lee 16

Overcoming Control Dependence - 1

» Speculative code motion

— Move control-dependent instruction ahead of a branch so that it can be
executed speculatively in a parallel group

Parallel d L g o Parallel d - d+ 1
Group Group |, - 5 * 3
if (a > t) then { jl>
b = 3 * 3 if (a >t) then){
} b = 3 X 3
c =a+d b is dead }
after branch |c = a + d

Fall 2025 Hunjun Lee 17

Overcoming Control Dependence - 2

« Speculative code motion w/ correction
— This is not applicable to store operations (no speculative store)

Parallel |-
Group d=d+ 1 Parallel |4 - 4 + 1
Group b’ = 3 * 3
if (a > t) then { >
b=a*a if (a > t) then){
} b= g* 3
c=a+b b =0b’
b is live i - a2+ b

Fall 2025 Hunjun Lee 18

Speculative Code Motion Summary

» Speculative code motion

— Move control-dependent instruction ahead of a branch so that it can be
executed speculatively in a parallel group

» Effectiveness of speculation
- Branch taken: GOOD
— Branch not-taken: Nothing to lose
— This should be done to exploit underutilized resources

* Correctness Problem
— Liveness, Exception (e.g., division), Permanency (e.g., store)

Fall 2025 Hunjun Lee 19

Data Dependence

* Must maintain the order of accesses to the same locations
— True dependence: write - read
— Anti dependence: read - write
— Qutput dependence: write - write

 We cannot move instructions if there is a data dependence

ri=r4 + r5
rz =r1+1

Fall 2025 Hunjun Lee 20

False Data Dependence

 We can rename registers using copies
— Remove data dependence (false dependence) and move the instructions

ri=r4 + r5
Parallel |r1 = r4 + r5 Parallel
Group |.. Group .15 = r3 _ 2
rZ =rl+1 :I|> r2=ri1+1
ri=r3 - 2 ri = r1’

Fall 2025 Hunjun Lee 21

True Data Dependence

 We can rename registers using copies
— Perform forward substitution to mitigate true dependencies

r2 ri + 1

rl ll: r3

rz2 + 1 r2

r3 rl

Fall 2025 Hunjun Lee 22

Basic Block Scheduling

» Basic block scheduling
— List scheduling
— Interaction between register allocation and scheduling

* Global scheduling

— Cross-block code scheduling

» Software pipelining

Fall 2025 Hunjun Lee 23

Virtual CPU Model

* All registers are read at the beginning of a cycle = and are
written at the end of a cycle

« Example: The following two instructions can be executed in
parallel
load r2 o(rl)
add rl r3, r4
— Load will use an old value (before it is written by add)

Fall 2025 Hunjun Lee 24

List Scheduling

* The most common technique: scheduling instructions within a
basic block

—We do not care about control flow ... {eevered-later)
 We care about ... data dependences and hardware resources

* This is an NP-hard problem ®

Fall 2025 Hunjun Lee 25

List Scheduling - 1

* Input:
— Data Precedence Graph (DPG): The graph structure of the instructions
according to the dependences between instructions

- Machine Parameters: The available resources and execution latency ...

* Output:

— The scheduled instruction code (grouped together to maximize the
performance)

Fall 2025 Hunjun Lee 26

List Scheduling - 2

* There is a list to keep the list of ready instructions
— Req #1. All the operands are ready to execute (and no false dependences)
— Req #2. The target resources are available

* Iteratively conduct scheduling in a cycle-by-cycle manner
— Choose target instructions from the list allocate
— Update the list and iterate over the same procedure again

Target List HE W

ow] FOEE

Fall 2025 Hunjun Lee 27

Key Challenge

* There is a problem when there are multiple ready instructions,
but we do not have enough resources

Target List Target List

! Contentlon;
¥ ¢

iofia] [i] <=

Fall 2025 Hunjun Lee 28

Data Precedence Graph (DPG) - 1

- Data dependence graph:
—nodes: instructions
— edges: data dependence constraints

9: a =1

1: £ = 3 + x| Add: 2 Cycles
2: b = 7 Others: 1 Cycle
3: ¢ =9

4. g =1t + b

5: d =13

6: e = 19 Ij‘>

7: h=Ff + c

8: Jj=d+y

9: z = -1

10: j L1

Fall 2025 Hunjun Lee 29

Data Precedence Graph (DPG) - 2

* There are two types of edges in the DPG
— True dependency
— False dependency

W NERO®
N X < X
X N X B

@

* Q1. Should we treat the RAW and WAR
dependency separately?

True
Dep.

False
Dep.

* Q2. What about WAW dependency?

— This should be removed after dead code
elimination (within a basic block!)

Wil N e ke ®

Fall 2025 Hunjun Lee 30

Determining Priorities in Contention

* Let’s assume that everything is true dependences
* Priority: latency-weighted depth

priority(x) = latency (x) = max(x,y)EE(PT lority (}’))

Fall 2025 Hunjun Lee 31

Determining Priorities in Contention

 Now consider the exact effect of the anti-dependences

— We can schedule two anti-dependent instruction at once (instead of waiting
for the predecessor)

priority(x) = max(latency (x) = max(x,y)eg(pTiOTity(Y)),
max, ,yeg' (Priority(y)))

Fall 2025 Hunjun Lee 32

List Scheduling Algorithm

cycle = ©
ready-1list = root nodes in DPG // Indicates the ready list
inflight-list = {} // Indicates the executing instructions (at the pipeline)

while (ready-list or inflight-1list not empty) { What is there is a tie?
for op = (all nodes in ready-1list in|decreasing priority order) {
if (an FU exists for op to start at cycle) {
remove op from ready-list and add to inflight-1list
add op to schedule at time cycle
if (op has an outgoing anti-edge)
add all targets of op’s anti-edges that are ready to ready-list

}
}
cycle = cycle + 1
for op = (all nodes in inflight-1list)
if (op finishes at time cycle) {
remove op from inflight-list
check nodes waiting for op & add to ready-list if all operands available

}
]

Fall 2025 Hunjun Lee 33

Discussions on Breaking Ties

- o Break ties by lower
priority(x) = max(latency(x) + max(y yyeg (priority(y)), instruction number

max, y)eg' (Priority(y))) Ready List

e, 2,35 6,9
1, 3, 5, 6, 9
5, 6, 9
4, 7, 8, 9
8, 9

Add takes two cycles;
Others take one cycles

444044

10

Fall 2025 Hunjun Lee 34

Discussions on Breaking Ties

priority(x) = max(latency(x) + maxy ez (priority(y)), What about this?
max g’ (Priority(y))) Ready List
e, 2,3 5,6,09
1, 3, 5, 6, 9
3, 6, 8, 9
4, 6, 7, 9
6, 9

4 44404

10

Add takes two cycles;
Others take one cycles

Fall 2025 Hunjun Lee 35

Alternative Approach

* Scheduling from backwards ...
— Schedule the finish times instead of the start times

Forward Scheduling Backward Scheduling

Fall 2025 Hunjun Lee 36

Backward List Scheduling

* Reverse the direction of edges & schedule the finish time
* This can be randomly good or bad ...

- 9, 5
- 1, 3
- 2, 3, 8
- 4, 7, 8
Add takes two cycles; - 6, 9
Others take one cycles & 10

Fall 2025 Hunjun Lee

List Scheduling (Forward Scheduling)

Fall 2025 Hunjun Lee

Assume pipelined HW

38

1 cyc 2 cyc | 3 cyc

(%] 9
1 10

2 5 15
3 6

4 7 11

8 12

13

14

16

e
w

e
I

e

16

9, 10
10
15

List Scheduling (Backward Scheduling)

Fall 2025 Hunjun Lee

Assume pipelined HW

39

1 cyc

4

2 cyc

3 cyc

15

3
2
1
%)

14

il |N|]o | O

13

12

11

10

16

4
3, 4, 9
2, 3, 8

1, 2, 7, 15

0, 6, 14, 15
5, 13, 14, 15
12, 13, 14, 15
11, 12, 13, 14, 15
10

16

Advanced Approaches
 RBF scheduling:

— Schedule beach block M times forward and backward
— Break ties randomly for each trial

Fall 2025 Hunjun Lee 40

Basic Block Scheduling

» Basic block scheduling
— List scheduling
— Interaction between register allocation and scheduling

* Global scheduling

— Cross-block code scheduling

Soff o olins

Fall 2025 Hunjun Lee 41

Global Scheduling Example

 Machine Model:
— Fully-pipelined execution path

« LD takes two cycles + Others take one cycle 1w r@ o(r5) nop
— Two parallel general-execution path nop nop
begz ro, L nop
—
lw rl 0(r6) nop
nop nop
sw o(r7), ri nop
1w r2 0(r8)) nop
nop nop
add r2 r2 r2 nop
sw 0(r8) r2 nop

Fall 2025 Hunjun Lee 42

Basic Features

» Control equivalence: If i1 and i2 are control equivalent 2 if i1 is
executed if and only if i2 is executed

» Speculation: An instruction is speculatively executed if it is
executed before all the control-dependent instructions have
been executed

=>» As long as there are (1) no side-effects, (2) no exception, (3) does not
violative data dependence

Fall 2025 Hunjun Lee 43

Code Motion

* Goal: Probabilistically reduce the execution time based on the
frequency of the execution

* There are two different options:
— You may either move the instructions downwards to successor basic blocks

— You may also move the instructions upwards to predecessor basic
blocks

Problem: to where and how to move the instructions?

Fall 2025 Hunjun Lee 44

Global Scheduling Basics

* Schedule innermost loops first:
— The instructions should escape from the most executed basic blocks

* Apply upward code-motion to the following two options:
— Non-speculative: A control-equivalent block
— Speculative: A control-equivalent block of a dominating predecessor

Fall 2025 Hunjun Lee 45

Scheduling Algorithm

Compute data dependences;
For each B in BB list in R (in topological order w/o back edge) {
CandInsts = ready instructions in NonSpeculative(B) U Speculative(B)
// All the incoming dependences have already been scheduled
For t slots until all the instructions in B has been scheduled {
For n in CandInsts in priority order {
// Prioritize non-speculative over speculative
if (ok to move n to B &% n has no resource conflicts @t) {
// OK: do not speculatively move exception & store ..
// Same as the List Scheduling
Schedule the inst to (B, t)
Update resource commitments & dependences

¥
¥

Update CandInsts // some insts may become ready!

ﬁ}
Fall 2025 Hunjun Lee 46

Scheduling Example

 Machine Model:
— Fully-pipelined execution path B1

il | 1w re o(r5) nop

« LD takes two cycles + Others take one cycle

— Two parallel general-execution path - beqznoppe - :ZE 55
* Priority order: B1, B2, B3 B | DorEowe) | nop
« Control equivalence: {B1, B3}, {B2} - e(”";’) 1 nop
] B3 1 SW r/7), r nop
 Non-speculative(B1) = {B1, B3} ST e o
» Speculative(B1) = {B2} nop nop
i6 add r2 r2 r2 nop
« Candidates = {|1, |3, |5} i7 sw 9(r8) r2 nop

Fall 2025 Hunjun Lee 47

Scheduling Example
(1)/ Bt \ B1

il | 1w re o(r5) nop lw re o(r5) lw r2 0(r8)
nop <~ nop lw rl 0(r6) nop
i2 beqz ro@, L ||y nop beqz ro, L add r2 r2 r2
@ B2 B2
i3 lw rl 0(ré6) nop w1l 0{r6e) nop
nop nop Rop Rop
i4 sw 0(r7), ri nop sw 0(r7), ri nop
@ i5 lw r2 0(r8) nop Iw—+r2-8(r8) nop
nop nop ROP ROP
i6 add r2 r2 r2 nop add—r2—r2—+r2 nop
i7 sw 0(r8) r2 nop sw 0(r8) r2 nop

Fall 2025 Hunjun Lee 48

Unrolling and Instruction Scheduling - 1

 Assumption:
— Two general purpose pipelines
- (mem + alu take two cycles) & (branch & copy take one cycle)

* Unrolling enables a new scheduling opportunities

¥ 1
1: add r@ ro 1
2: load rl 0(ro) 2
3: add rl1 r1 1
4: store rl 0(ro) 3
5: bne rl O Loop
4 5

Fall 2025 Hunjun Lee 49

Unrolling and Instruction Scheduling - 2

¥

vidwWNBR

:add ro ro 1
: load rl 0(ro)
cradd rl1 rl1 1

store rl 0(ro)

: beq rl 0 Exit

¥

vibhbwnnNnBR

:add ro ro 1

load rl1 0(ro)

cadd rl1 rl 1

store rl 0(ro)

: beq rl 0 Exit

A 4

A 4

vih wpN -

: add ro ro 1
: load rl 0(ro)
:add rl1 r1 1

store rl 0(ro)

: bne rl O Loop

Fall 2025 Hunjun Lee

\DOO\IO\

: add r2 ro 1

: load r3 o(r2)
:add r3 r3 1

: store r3 o(r2)

10: mv ro r2
11: mv rl r3
12: bne rl 0 Loop

Register renaming
to remove false
dependencies

Unrolling and Instruction Scheduling - 2

:
1: add ro ro 1 1: add re ro 1 -
2: load rl 0(ro)
3: add r1 r1 1 2: load r1 o(ro) 6: add r2 ro 1
4: store rl 0(ro) 190: mv ro r2
5: beq rl @ Exit 3: add r1 r1 1 | 7: load r3 0(r2)
v 4: store rl 0(r@) | 5: beq rl 0 Exit
6: add r2 ro 1 8: add r3 r3 1
7: load r3 0(r2)
8: add r3 r3 1 11: mv rl r3 9: store r3 0(r2)
9: store r3 0(r2) 12: bne rl 0 Loop
10: mv ro r2 o
11: mv rl r3 0
12: bne rl 0 Loop
|

Fall 2025 Hunjun Lee 51

	슬라이드 1: 12. Instruction Scheduling
	슬라이드 2: Instruction Scheduling
	슬라이드 3: CPU Microarchitecture (Superscalar)
	슬라이드 4: ILP: Instruction-level parallelism
	슬라이드 5: Pipeline + SuperScalar
	슬라이드 6: Pipeline + SuperScalar
	슬라이드 7: Hazards in the dual-issue CPU
	슬라이드 8: Hazards in the dual-issue CPU
	슬라이드 9: Scheduling Constraints
	슬라이드 10: Scheduling Constraints
	슬라이드 11: Finite Issue Width
	슬라이드 12: Limited FUs per Inst. Type
	슬라이드 13: Limited FUs per Inst. Type
	슬라이드 14: Scheduling Constraints
	슬라이드 15: Dependencies Limit Parallelization
	슬라이드 16: Control Dependence
	슬라이드 17: Overcoming Control Dependence - 1
	슬라이드 18: Overcoming Control Dependence - 2
	슬라이드 19: Speculative Code Motion Summary
	슬라이드 20: Data Dependence
	슬라이드 21: False Data Dependence
	슬라이드 22: True Data Dependence
	슬라이드 23: Basic Block Scheduling
	슬라이드 24: Virtual CPU Model
	슬라이드 25: List Scheduling
	슬라이드 26: List Scheduling - 1
	슬라이드 27: List Scheduling - 2
	슬라이드 28: Key Challenge
	슬라이드 29: Data Precedence Graph (DPG) - 1
	슬라이드 30: Data Precedence Graph (DPG) - 2
	슬라이드 31: Determining Priorities in Contention
	슬라이드 32: Determining Priorities in Contention
	슬라이드 33: List Scheduling Algorithm
	슬라이드 34: Discussions on Breaking Ties
	슬라이드 35: Discussions on Breaking Ties
	슬라이드 36: Alternative Approach
	슬라이드 37: Backward List Scheduling
	슬라이드 38: List Scheduling (Forward Scheduling)
	슬라이드 39: List Scheduling (Backward Scheduling)
	슬라이드 40: Advanced Approaches
	슬라이드 41: Basic Block Scheduling
	슬라이드 42: Global Scheduling Example
	슬라이드 43: Basic Features
	슬라이드 44: Code Motion
	슬라이드 45: Global Scheduling Basics
	슬라이드 46: Scheduling Algorithm
	슬라이드 47: Scheduling Example
	슬라이드 48: Scheduling Example
	슬라이드 49: Unrolling and Instruction Scheduling - 1
	슬라이드 50: Unrolling and Instruction Scheduling - 2
	슬라이드 51: Unrolling and Instruction Scheduling - 2

