
Fall 2025 Hunjun Lee

12. Instruction Scheduling

2025 Fall

Hunjun Lee

Hanyang University

Fall 2025 Hunjun Lee 2

Instruction Scheduling

• There are some opportunities to improve the performance

using scheduling and reordering

• The instruction scheduling should not affect the functionality

• We cannot reschedule all the instructions due to the

dependencies

Fall 2025 Hunjun Lee 3

CPU Microarchitecture (Superscalar)

I-cache

Reg

File

Read

PC

D-cacheALU

ALU

Reg

File

Write

2 X

fetch

bandwidth

2 X

read

ports

2 X

Logic

2 X

write

ports

Pipe A

Pipe B

?

ALUOp: 1 Cycle

Load: 1 Cycle

Store: 1 Cycle

Fall 2025 Hunjun Lee 4

ILP: Instruction-level parallelism

code2:
addi $r1, $r2, 1
divi $r3, $r9, 17
sub $r4, $r0, $r10

Max ILP = 3 (execute parallel)Max ILP = 1 (execute serially)

code1:
addi $r1, $r2, 1
divi $r3, $r1, 17
sub $r4, $r0, $r3

• ILP is the parallel or simultaneous execution of a sequence of

instructions

− Inter-dependent instructions cannot be executed in parallel

• Program ILP = Avg. # of instructions / Cycle (step)

− How many instructions are simultaneously executed in parallel

Fall 2025 Hunjun Lee 5

Pipeline + SuperScalar

◆ Pipelining: executing multiple instructions in parallel

- Operation latency = 1

- Peak IPC = 1

- HW ILP = # of instructions / # of cycles required = 1

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Inst0 IF ID EX M WB

t12

Inst1 IF ID EX M WB

Inst2 IF ID EX M WB

Inst3 IF ID EX M WB

Inst4 IF ID EX M WB

Fall 2025 Hunjun Lee 6

Pipeline + SuperScalar

• Superscalar (+ pipelined) execution

− Operation latency = 1 baseline cycle

− Peak IPC = N per baseline cycle

− HW ILP = # of instructions / # of cycles required = N

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Inst0 IF ID EX M WB

Inst1 IF ID EX M WB

Inst2 IF ID EX M WB

Inst3
Inst4
Inst5

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

Inst6
Inst7
Inst8

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

Fall 2025 Hunjun Lee 7

Hazards in the dual-issue CPU

• More instructions are executed in parallel

• EX data hazard

− Can’t use ALU result in load/store in same packet

add $t0, $s0, $s1

load $s2, 0($t0)

• Load-use hazard

− Still one cycle use latency

load $t0, 0($s0)

add $t2, $t0, $s1

Slot 0

Slot 1

Slot 0

Slot 1

1 cycle stall

Fall 2025 Hunjun Lee 8

Hazards in the dual-issue CPU

• It also suffers from false dependencies

• Write after write hazard

− The two packed instructions cannot write to the same register

load $t0, 0($s0)

add $t0, $t1, $s1

Fall 2025 Hunjun Lee 9

Scheduling Constraints

• Resource Constraints

− Processors have finite number of resources → Limits on how these

resources can be used together

• Fixed issue width (4 ~ 8 instructions)

• Limited functional units per given instruction type

• Limited pipelining with a given functional unit (division?)

• Program Constraints (Dependence, Precedence …)

− There are ordering relationships in the program

• Dependence #1: Data Dependence

• Dependence #2: Control Dependence

− There are aggressive scheduling techniques to overcome the dependency

Fall 2025 Hunjun Lee 10

Scheduling Constraints

• Resource Constraints

− Processors have finite number of resources → Limits on how these

resources can be used together

• Fixed issue width (4 ~ 8 instructions)

• Limited functional units per given instruction type

• Limited pipelining with a given functional unit (division?)

• Program Constraints (Dependence, Precedence …)

− There are ordering relationships in the program

• Dependence #1: Data Dependence

• Dependence #2: Control Dependence

− There are aggressive scheduling techniques to overcome the dependency

Fall 2025 Hunjun Lee 11

Finite Issue Width

• In a superscalar machine → we cannot issue more than N

different instructions within a cycle

t0 t1 t2 t3 t4 t5

Inst0
Inst1
Inst2
Inst3
Inst4
Inst5

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

Superscalar Parallelism

Operation Latency: 1

Issuing Rate: N

Superscalar Degree: N

Fall 2025 Hunjun Lee 12

Limited FUs per Inst. Type

• We cannot issue an instruction for a given functional unit if it is

fully utilized

− Ex) 4-way superscalar with 2 integer units, 1 memory units, and 1 floating-

point units

INT MEM FLOAT

Fall 2025 Hunjun Lee 13

Limited FUs per Inst. Type

• Another requirement: A floating-point operation takes two

cycles

INT MEM FLOAT

Fall 2025 Hunjun Lee 14

Scheduling Constraints

• Resource Constraints

− Processors have finite number of resources → Limits on how these

resources can be used together

• Fixed issue width (4 ~ 8 instructions)

• Limited functional units per given instruction type

• Limited pipelining with a given functional unit (division?)

• Program Constraints (Dependence, Precedence …)

− There are ordering relationships in the program

• Dependence #1: Data Dependence

• Dependence #2: Control Dependence

− There are aggressive scheduling techniques to overcome the dependency

Fall 2025 Hunjun Lee 15

Dependencies Limit Parallelization

• We cannot execute consecutive instructions in parallel upon

control and data dependencies

z = z + 1
x = y + 1
w = x * 10

Data Dependency

Parallel

Group
z = z + 1
x = y + 1
if (cc)
 w = w + 1

Control Dependency

Parallel

Group

Fall 2025 Hunjun Lee 16

Control Dependence

• We cannot parallelize instructions when there is a control

dependence

− We cannot move instruction inside the branch b = a * a

z = z + 1
x = y + 1
if (a > t) then {
 b = a * a
}
c = a * d

Parallel

Group

Fall 2025 Hunjun Lee 17

Overcoming Control Dependence - 1

• Speculative code motion

− Move control-dependent instruction ahead of a branch so that it can be

executed speculatively in a parallel group

Parallel

Group

…
d = d + 1

if (a > t) then {
 b = a * a
}
c = a + d

…
d = d + 1
b = a * a

if (a > t) then {
 b = a * a
}
c = a + d

Parallel

Group

b is dead

after branch

Fall 2025 Hunjun Lee 18

Overcoming Control Dependence - 2

• Speculative code motion w/ correction

− This is not applicable to store operations (no speculative store)

Parallel

Group

…
d = d + 1

if (a > t) then {
 b = a * a
}
c = a + b

…
d = d + 1
b’ = a * a

if (a > t) then {
 b = a * a
 b = b’
}
c = a + b

Parallel

Group

b is live

Fall 2025 Hunjun Lee 19

Speculative Code Motion Summary

• Speculative code motion

− Move control-dependent instruction ahead of a branch so that it can be

executed speculatively in a parallel group

• Effectiveness of speculation

− Branch taken: GOOD

− Branch not-taken: Nothing to lose

− This should be done to exploit underutilized resources

• Correctness Problem

− Liveness, Exception (e.g., division), Permanency (e.g., store)

Fall 2025 Hunjun Lee 20

Data Dependence

• Must maintain the order of accesses to the same locations

− True dependence: write → read

− Anti dependence: read → write

− Output dependence: write → write

• We cannot move instructions if there is a data dependence

r1 = r4 + r5
r2 = r1 + 1

Fall 2025 Hunjun Lee 21

False Data Dependence

• We can rename registers using copies

− Remove data dependence (false dependence) and move the instructions

Parallel

Group
r1 = r4 + r5
…
r2 = r1 + 1
r1 = r3 - 2

Parallel

Group

r1 = r4 + r5
…
r1’ = r3 - 2
r2 = r1 + 1
r1 = r1’

Fall 2025 Hunjun Lee 22

True Data Dependence

• We can rename registers using copies

− Perform forward substitution to mitigate true dependencies

…
r2 = r1
…
r3 = r2 + 1

…
r3 = r1 + 1
…
r2 = r1

Fall 2025 Hunjun Lee 23

Basic Block Scheduling

• Basic block scheduling

− List scheduling

− Interaction between register allocation and scheduling

• Global scheduling

− Cross-block code scheduling

• Software pipelining

Fall 2025 Hunjun Lee 24

Virtual CPU Model

• All registers are read at the beginning of a cycle → and are

written at the end of a cycle

• Example: The following two instructions can be executed in

parallel

load r2 0(r1)

add r1 r3, r4

− Load will use an old value (before it is written by add)

Fall 2025 Hunjun Lee 25

List Scheduling

• The most common technique: scheduling instructions within a

basic block

− We do not care about control flow … (covered later)

• We care about … data dependences and hardware resources

• This is an NP-hard problem 

Fall 2025 Hunjun Lee 26

List Scheduling - 1

• Input:

− Data Precedence Graph (DPG): The graph structure of the instructions

according to the dependences between instructions

− Machine Parameters: The available resources and execution latency …

• Output:

− The scheduled instruction code (grouped together to maximize the

performance)

Fall 2025 Hunjun Lee 27

List Scheduling - 2

• There is a list to keep the list of ready instructions

− Req #1. All the operands are ready to execute (and no false dependences)

− Req #2. The target resources are available

• Iteratively conduct scheduling in a cycle-by-cycle manner

− Choose target instructions from the list allocate

− Update the list and iterate over the same procedure again

INT: i0, i4 FLOAT: i1

Target List

Fall 2025 Hunjun Lee 28

Key Challenge

• There is a problem when there are multiple ready instructions,

but we do not have enough resources

INT: i0, i4 FLOAT: i1

Target List

i0 i4 i1

INT: i0, i2, i4 FLOAT: i1, i3

Target List

Contention

Fall 2025 Hunjun Lee 29

Data Precedence Graph (DPG) - 1

• Data dependence graph:

− nodes: instructions

− edges: data dependence constraints

0: a = 1
 1: f = a + x
 2: b = 7
 3: c = 9
 4: g = f + b
 5: d = 13
 6: e = 19
 7: h = f + c
 8: j = d + y
 9: z = -1
10: j L1

Add: 2 Cycles

Others: 1 Cycle
0

2 1 3
5

9
4

7
6 8

10

Fall 2025 Hunjun Lee 30

Data Precedence Graph (DPG) - 2

• There are two types of edges in the DPG

− True dependency

− False dependency

• Q1. Should we treat the RAW and WAR

dependency separately?

• Q2. What about WAW dependency?

− This should be removed after dead code

elimination (within a basic block!)

0: x = 1
1: y = x
2: x = 2
3: z = x

0

1

2

3

True

Dep.

False

Dep.

Fall 2025 Hunjun Lee 31

Determining Priorities in Contention

• Let’s assume that everything is true dependences

• Priority: latency-weighted depth

0

2 1 3
5

9
4

7
6 8

10

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑥 = 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑥 + 𝑚𝑎𝑥 𝑥,𝑦 ∈𝐸 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑦

Fall 2025 Hunjun Lee 32

Determining Priorities in Contention
• Now consider the exact effect of the anti-dependences

− We can schedule two anti-dependent instruction at once (instead of waiting

for the predecessor)

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑥 = max(𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑥 + 𝑚𝑎𝑥 𝑥,𝑦 ∈𝐸 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑦 ,

𝑚𝑎𝑥 𝑥,𝑦 ∈𝐸′(𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑦)))

0

2 1 3
5

9
4

7
6 8

10

Fall 2025 Hunjun Lee 33

List Scheduling Algorithm
cycle = 0
ready-list = root nodes in DPG // Indicates the ready list
inflight-list = {} // Indicates the executing instructions (at the pipeline)

while (ready-list or inflight-list not empty) {
 for op = (all nodes in ready-list in decreasing priority order) {
 if (an FU exists for op to start at cycle) {
 remove op from ready-list and add to inflight-list
 add op to schedule at time cycle
 if (op has an outgoing anti-edge)
 add all targets of op’s anti-edges that are ready to ready-list
 }
 }
 cycle = cycle + 1
 for op = (all nodes in inflight-list)
 if (op finishes at time cycle) {
 remove op from inflight-list
 check nodes waiting for op & add to ready-list if all operands available
 }
 }
}

What is there is a tie?

Fall 2025 Hunjun Lee 34

Discussions on Breaking Ties

0

2 1 3
5

9
4

7
6 8

10

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑥 = max(𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑥 + 𝑚𝑎𝑥 𝑥,𝑦 ∈𝐸 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑦 ,

𝑚𝑎𝑥 𝑥,𝑦 ∈𝐸′(𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑦)))

0 2

1 3

5 6

4 7

8 9

10

Ready List

0, 2, 3, 5, 6, 9

1, 3, 5, 6, 9

5, 6, 9

4, 7, 8, 9

8, 9

10

Break ties by lower

instruction number

Add takes two cycles;

Others take one cycles

Fall 2025 Hunjun Lee 35

Discussions on Breaking Ties
𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑥 = max(𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑥 + 𝑚𝑎𝑥 𝑥,𝑦 ∈𝐸 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑦 ,

𝑚𝑎𝑥 𝑥,𝑦 ∈𝐸′(𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑦)))

0 2

1 5

3 8

4 7

6 9

10

Ready List

0, 2, 3, 5, 6, 9

1, 3, 5, 6, 9

3, 6, 8, 9

4, 6, 7, 9

6, 9

What about this?

10

0

2 1 3
5

9
4

7
6 8

10

Add takes two cycles;

Others take one cycles

Fall 2025 Hunjun Lee 36

Alternative Approach

• Scheduling from backwards …

− Schedule the finish times instead of the start times

Forward Scheduling Backward Scheduling

0

2 1 3
5

9
4

7
6 8

10

0

2 1 3
5

9
4

7
6 8

10

Fall 2025 Hunjun Lee 37

Backward List Scheduling

• Reverse the direction of edges & schedule the finish time

• This can be randomly good or bad …

Add takes two cycles;

Others take one cycles

0 5

1 3

2 8

4 7

6 9

10 10

0, 5

1, 3, 5

2, 3, 8

4, 7, 8

6, 9

0

2 1 3
5

9
4

7
6 8

10

Fall 2025 Hunjun Lee 38

List Scheduling (Forward Scheduling)

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14 15

16

1 cyc 2 cyc 3 cyc

0 9

1 10

2 5 15

3 6

4 7 11

8 12

13

14

16

0, 1, 2, 3, 4, 9, 10

1, 2, 3, 4, 10

2, 3, 4, 5, 15

3, 4, 6

4, 7, 11

8, 12

13

14

-

-

16

Assume pipelined HW

Fall 2025 Hunjun Lee 39

List Scheduling (Backward Scheduling)

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14 15

16

1 cyc 2 cyc 3 cyc

4

3 9

1 8

2 7 15

0 6 14

5 13

12

11

10

16

4

3, 4, 9

1, 3, 8

2, 7, 15

0, 6, 14, 15

5, 13, 14, 15

12, 13, 14, 15

11, 12, 13, 14, 15

10

-

16

Assume pipelined HW

Fall 2025 Hunjun Lee 40

Advanced Approaches

• RBF scheduling:

− Schedule beach block M times forward and backward

− Break ties randomly for each trial

Fall 2025 Hunjun Lee 41

Basic Block Scheduling

• Basic block scheduling

− List scheduling

− Interaction between register allocation and scheduling

• Global scheduling

− Cross-block code scheduling

• Software pipelining

Fall 2025 Hunjun Lee 42

Global Scheduling Example

• Machine Model:

− Fully-pipelined execution path

• LD takes two cycles + Others take one cycle

− Two parallel general-execution path

lw r0 0(r5) nop

nop nop

beqz r0, L nop

lw r2 0(r8) nop

nop nop

add r2 r2 r2 nop

sw 0(r8) r2 nop

lw r1 0(r6) nop

nop nop

sw 0(r7), r1 nop

Fall 2025 Hunjun Lee 43

Basic Features

• Control equivalence: If i1 and i2 are control equivalent → if i1 is

executed if and only if i2 is executed

• Speculation: An instruction is speculatively executed if it is

executed before all the control-dependent instructions have

been executed

➔ As long as there are (1) no side-effects, (2) no exception, (3) does not

violative data dependence

Fall 2025 Hunjun Lee 44

Code Motion

• Goal: Probabilistically reduce the execution time based on the

frequency of the execution

• There are two different options:

− You may either move the instructions downwards to successor basic blocks

− You may also move the instructions upwards to predecessor basic

blocks

Problem: to where and how to move the instructions?

Fall 2025 Hunjun Lee 45

Global Scheduling Basics

• Schedule innermost loops first:

− The instructions should escape from the most executed basic blocks

• Apply upward code-motion to the following two options:

− Non-speculative: A control-equivalent block

− Speculative: A control-equivalent block of a dominating predecessor

Fall 2025 Hunjun Lee 46

Compute data dependences;
For each B in BB list in R (in topological order w/o back edge) {
 CandInsts = ready instructions in NonSpeculative(B) U Speculative(B)
 // All the incoming dependences have already been scheduled
 For t slots until all the instructions in B has been scheduled {
 For n in CandInsts in priority order {
 // Prioritize non-speculative over speculative
 if (ok to move n to B && n has no resource conflicts @t) {
 // OK: do not speculatively move exception & store …
 // Same as the List Scheduling
 Schedule the inst to (B, t)
 Update resource commitments & dependences
 }
 }
 }
 Update CandInsts // some insts may become ready!
}

Scheduling Algorithm

Fall 2025 Hunjun Lee 47

Scheduling Example

• Machine Model:

− Fully-pipelined execution path

• LD takes two cycles + Others take one cycle

− Two parallel general-execution path

• Priority order: B1, B2, B3

• Control equivalence: {B1, B3}, {B2}

• Non-speculative(B1) = {B1, B3}

• Speculative(B1) = {B2}

• Candidates = {i1, i3, i5}

i1 lw r0 0(r5) nop

nop nop

i2 beqz r0, L nop

i5 lw r2 0(r8) nop

nop nop

i6 add r2 r2 r2 nop

i7 sw 0(r8) r2 nop

i3 lw r1 0(r6) nop

nop nop

i4 sw 0(r7), r1 nop

B1

B3

B2

Fall 2025 Hunjun Lee 48

Scheduling Example

i1 lw r0 0(r5) nop

nop nop

i2 beqz r0, L nop

i5 lw r2 0(r8) nop

nop nop

i6 add r2 r2 r2 nop

i7 sw 0(r8) r2 nop

i3 lw r1 0(r6) nop

nop nop

i4 sw 0(r7), r1 nop

B1

B3

B2

1

2

3

lw r0 0(r5) lw r2 0(r8)

lw r1 0(r6) nop

beqz r0, L add r2 r2 r2

lw r2 0(r8) nop

nop nop

add r2 r2 r2 nop

sw 0(r8) r2 nop

lw r1 0(r6) nop

nop nop

sw 0(r7), r1 nop

B1

B3

B2

Fall 2025 Hunjun Lee 49

Unrolling and Instruction Scheduling - 1

• Assumption:

− Two general purpose pipelines

− (mem + alu take two cycles) & (branch & copy take one cycle)

• Unrolling enables a new scheduling opportunities

1: add r0 r0 1
2: load r1 0(r0)
3: add r1 r1 1
4: store r1 0(r0)
5: bne r1 0 Loop

Path0 Path1

1

2

3

4 5

Fall 2025 Hunjun Lee 50

Unrolling and Instruction Scheduling - 2

1: add r0 r0 1
2: load r1 0(r0)
3: add r1 r1 1
4: store r1 0(r0)
5: beq r1 0 Exit

1: add r0 r0 1
2: load r1 0(r0)
3: add r1 r1 1
4: store r1 0(r0)
5: bne r1 0 Loop

Exit

1: add r0 r0 1
2: load r1 0(r0)
3: add r1 r1 1
4: store r1 0(r0)
5: beq r1 0 Exit

6: add r2 r0 1
7: load r3 0(r2)
8: add r3 r3 1
9: store r3 0(r2)
10: mv r0 r2
11: mv r1 r3
12: bne r1 0 Loop

Exit

Register renaming

to remove false

dependencies

Fall 2025 Hunjun Lee 51

Unrolling and Instruction Scheduling - 2
Path0 Path1

1: add r0 r0 1 -

2: load r1 0(r0) 6: add r2 r0 1

3: add r1 r1 1 7: load r3 0(r2)

4: store r1 0(r0) 5: beq r1 0 Exit
8: add r3 r3 1 10: mv r0 r2

11: mv r1 r3 9: store r3 0(r2)
12: bne r1 0 Loop

1: add r0 r0 1
2: load r1 0(r0)
3: add r1 r1 1
4: store r1 0(r0)
5: beq r1 0 Exit

6: add r2 r0 1
7: load r3 0(r2)
8: add r3 r3 1
9: store r3 0(r2)
10: mv r0 r2 0
11: mv r1 r3 0
12: bne r1 0 Loop

Exit

	슬라이드 1: 12. Instruction Scheduling
	슬라이드 2: Instruction Scheduling
	슬라이드 3: CPU Microarchitecture (Superscalar)
	슬라이드 4: ILP: Instruction-level parallelism
	슬라이드 5: Pipeline + SuperScalar
	슬라이드 6: Pipeline + SuperScalar
	슬라이드 7: Hazards in the dual-issue CPU
	슬라이드 8: Hazards in the dual-issue CPU
	슬라이드 9: Scheduling Constraints
	슬라이드 10: Scheduling Constraints
	슬라이드 11: Finite Issue Width
	슬라이드 12: Limited FUs per Inst. Type
	슬라이드 13: Limited FUs per Inst. Type
	슬라이드 14: Scheduling Constraints
	슬라이드 15: Dependencies Limit Parallelization
	슬라이드 16: Control Dependence
	슬라이드 17: Overcoming Control Dependence - 1
	슬라이드 18: Overcoming Control Dependence - 2
	슬라이드 19: Speculative Code Motion Summary
	슬라이드 20: Data Dependence
	슬라이드 21: False Data Dependence
	슬라이드 22: True Data Dependence
	슬라이드 23: Basic Block Scheduling
	슬라이드 24: Virtual CPU Model
	슬라이드 25: List Scheduling
	슬라이드 26: List Scheduling - 1
	슬라이드 27: List Scheduling - 2
	슬라이드 28: Key Challenge
	슬라이드 29: Data Precedence Graph (DPG) - 1
	슬라이드 30: Data Precedence Graph (DPG) - 2
	슬라이드 31: Determining Priorities in Contention
	슬라이드 32: Determining Priorities in Contention
	슬라이드 33: List Scheduling Algorithm
	슬라이드 34: Discussions on Breaking Ties
	슬라이드 35: Discussions on Breaking Ties
	슬라이드 36: Alternative Approach
	슬라이드 37: Backward List Scheduling
	슬라이드 38: List Scheduling (Forward Scheduling)
	슬라이드 39: List Scheduling (Backward Scheduling)
	슬라이드 40: Advanced Approaches
	슬라이드 41: Basic Block Scheduling
	슬라이드 42: Global Scheduling Example
	슬라이드 43: Basic Features
	슬라이드 44: Code Motion
	슬라이드 45: Global Scheduling Basics
	슬라이드 46: Scheduling Algorithm
	슬라이드 47: Scheduling Example
	슬라이드 48: Scheduling Example
	슬라이드 49: Unrolling and Instruction Scheduling - 1
	슬라이드 50: Unrolling and Instruction Scheduling - 2
	슬라이드 51: Unrolling and Instruction Scheduling - 2

