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Instruction Scheduling

• There are some opportunities to improve the performance 

using scheduling and reordering

• The instruction scheduling should not affect the functionality

• We cannot reschedule all the instructions due to the 

dependencies
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CPU Microarchitecture (Superscalar)
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ILP: Instruction-level parallelism

code2:
addi  $r1,  $r2,  1
divi  $r3,  $r9,  17
sub   $r4,  $r0,  $r10 

Max ILP = 3 (execute parallel)Max ILP = 1 (execute serially)

code1:
addi  $r1,  $r2,  1
divi  $r3,  $r1,  17
sub   $r4,  $r0,  $r3 

• ILP is the parallel or simultaneous execution of a sequence of 

instructions

− Inter-dependent instructions cannot be executed in parallel

• Program ILP = Avg. # of instructions / Cycle (step)

− How many instructions are simultaneously executed in parallel
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Pipeline + SuperScalar

◆ Pipelining: executing multiple instructions in parallel

- Operation latency = 1

- Peak IPC = 1

- HW ILP = # of instructions / # of cycles required = 1

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Inst0 IF ID EX M WB

t12

Inst1 IF ID EX M WB

Inst2 IF ID EX M WB

Inst3 IF ID EX M WB

Inst4 IF ID EX M WB
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Pipeline + SuperScalar

• Superscalar (+ pipelined) execution

− Operation latency = 1 baseline cycle

− Peak IPC = N per baseline cycle

− HW ILP = # of instructions / # of cycles required = N

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Inst0 IF ID EX M WB

Inst1 IF ID EX M WB

Inst2 IF ID EX M WB

Inst3
Inst4
Inst5

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

Inst6
Inst7
Inst8

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB
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Hazards in the dual-issue CPU

• More instructions are executed in parallel

• EX data hazard

− Can’t use ALU result in load/store in same packet

add  $t0, $s0, $s1

load $s2, 0($t0)

• Load-use hazard

− Still one cycle use latency

load $t0, 0($s0)

add  $t2, $t0, $s1

Slot 0

Slot 1

Slot 0

Slot 1

1 cycle stall
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Hazards in the dual-issue CPU

• It also suffers from false dependencies

• Write after write hazard

− The two packed instructions cannot write to the same register

load $t0, 0($s0)

add  $t0, $t1, $s1
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Scheduling Constraints

• Resource Constraints

− Processors have finite number of resources → Limits on how these 

resources can be used together

• Fixed issue width (4 ~ 8 instructions)

• Limited functional units per given instruction type

• Limited pipelining with a given functional unit (division?)

• Program Constraints (Dependence, Precedence …)

− There are ordering relationships in the program

• Dependence #1: Data Dependence

• Dependence #2: Control Dependence

− There are aggressive scheduling techniques to overcome the dependency



Fall 2025 Hunjun Lee 10

Scheduling Constraints

• Resource Constraints

− Processors have finite number of resources → Limits on how these 

resources can be used together

• Fixed issue width (4 ~ 8 instructions)
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Finite Issue Width

• In a superscalar machine → we cannot issue more than N 

different instructions within a cycle

t0 t1 t2 t3 t4 t5

Inst0
Inst1
Inst2
Inst3
Inst4
Inst5

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

Superscalar Parallelism

Operation Latency: 1

Issuing Rate: N

Superscalar Degree: N
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Limited FUs per Inst. Type

• We cannot issue an instruction for a given functional unit if it is 

fully utilized

− Ex) 4-way superscalar with 2 integer units, 1 memory units, and 1 floating-

point units

INT MEM FLOAT
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Limited FUs per Inst. Type

• Another requirement: A floating-point operation takes two 

cycles

INT MEM FLOAT
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Scheduling Constraints

• Resource Constraints

− Processors have finite number of resources → Limits on how these 

resources can be used together

• Fixed issue width (4 ~ 8 instructions)

• Limited functional units per given instruction type

• Limited pipelining with a given functional unit (division?)

• Program Constraints (Dependence, Precedence …)

− There are ordering relationships in the program

• Dependence #1: Data Dependence

• Dependence #2: Control Dependence

− There are aggressive scheduling techniques to overcome the dependency
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Dependencies Limit Parallelization

• We cannot execute consecutive instructions in parallel upon 

control and data dependencies

z = z + 1
x = y + 1
w = x * 10

Data Dependency

Parallel

Group
z = z + 1
x = y + 1
if (cc)
 w = w + 1

Control Dependency

Parallel

Group
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Control Dependence

• We cannot parallelize instructions when there is a control 

dependence

− We cannot move instruction inside the branch b = a * a 

z = z + 1
x = y + 1
if (a > t) then {
 b = a * a
}
c = a * d

Parallel

Group
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Overcoming Control Dependence - 1

• Speculative code motion

− Move control-dependent instruction ahead of a branch so that it can be 

executed speculatively in a parallel group

Parallel

Group

…
d = d + 1

if ( a > t ) then {
 b = a * a
}
c = a + d

…
d = d + 1
b = a * a

if ( a > t ) then {
 b = a * a
}
c = a + d

Parallel

Group

b is dead

after branch
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Overcoming Control Dependence - 2

• Speculative code motion w/ correction

− This is not applicable to store operations (no speculative store)

Parallel

Group

…
d = d + 1

if ( a > t ) then {
 b = a * a
}
c = a + b

…
d = d + 1
b’ = a * a

if ( a > t ) then {
 b = a * a
 b = b’
}
c = a + b

Parallel

Group

b is live
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Speculative Code Motion Summary

• Speculative code motion

− Move control-dependent instruction ahead of a branch so that it can be 

executed speculatively in a parallel group

• Effectiveness of speculation

− Branch taken: GOOD

− Branch not-taken: Nothing to lose

− This should be done to exploit underutilized resources

• Correctness Problem

− Liveness, Exception (e.g., division), Permanency (e.g., store)
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Data Dependence

• Must maintain the order of accesses to the same locations

− True dependence: write → read

− Anti dependence: read → write

− Output dependence: write → write

• We cannot move instructions if there is a data dependence

r1 = r4 + r5
r2 = r1 + 1
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False Data Dependence

• We can rename registers using copies

− Remove data dependence (false dependence) and move the instructions

Parallel

Group
r1 = r4 + r5
…
r2 = r1 + 1
r1 = r3 - 2

Parallel

Group

r1 = r4 + r5
…
r1’ = r3 - 2
r2 = r1 + 1
r1 = r1’
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True Data Dependence

• We can rename registers using copies

− Perform forward substitution to mitigate true dependencies

…
r2 = r1
…
r3 = r2 + 1

…
r3 = r1 + 1
…
r2 = r1
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Basic Block Scheduling

• Basic block scheduling 

− List scheduling

− Interaction between register allocation and scheduling

• Global scheduling

− Cross-block code scheduling

• Software pipelining
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Virtual CPU Model

• All registers are read at the beginning of a cycle → and are 

written at the end of a cycle

• Example: The following two instructions can be executed in 

parallel

load r2 0(r1)

add r1 r3, r4

− Load will use an old value (before it is written by add)



Fall 2025 Hunjun Lee 25

List Scheduling

• The most common technique: scheduling instructions within a 

basic block

− We do not care about control flow … (covered later)

• We care about … data dependences and hardware resources

• This is an NP-hard problem 
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List Scheduling - 1

• Input:

− Data Precedence Graph (DPG): The graph structure of the instructions 

according to the dependences between instructions

− Machine Parameters: The available resources and execution latency …

• Output:

− The scheduled instruction code (grouped together to maximize the 

performance)
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List Scheduling - 2

• There is a list to keep the list of ready instructions

− Req #1. All the operands are ready to execute (and no false dependences)

− Req #2. The target resources are available

• Iteratively conduct scheduling in a cycle-by-cycle manner

− Choose target instructions from the list allocate

− Update the list and iterate over the same procedure again

INT: i0, i4 FLOAT: i1

Target List
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Key Challenge

• There is a problem when there are multiple ready instructions, 

but we do not have enough resources

INT: i0, i4 FLOAT: i1

Target List

i0 i4 i1

INT: i0, i2, i4 FLOAT: i1, i3

Target List

Contention
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Data Precedence Graph (DPG) - 1

• Data dependence graph:

− nodes: instructions

− edges: data dependence constraints

0: a = 1
 1: f = a + x
 2: b = 7
 3: c = 9
 4: g = f + b
 5: d = 13
 6: e = 19
 7: h = f + c
 8: j = d + y
 9: z = -1
10: j L1

Add: 2 Cycles

Others: 1 Cycle
0

2 1 3
5

9
4

7
6 8

10
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Data Precedence Graph (DPG) - 2

• There are two types of edges in the DPG

− True dependency

− False dependency

• Q1. Should we treat the RAW and WAR 

dependency separately?

• Q2. What about WAW dependency?

− This should be removed after dead code 

elimination (within a basic block!)

0: x = 1
1: y = x
2: x = 2
3: z = x

0

1

2

3

True 

Dep.

False 

Dep.
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Determining Priorities in Contention

• Let’s assume that everything is true dependences

• Priority: latency-weighted depth

0

2 1 3
5

9
4

7
6 8

10

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑥 = 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑥 + 𝑚𝑎𝑥 𝑥,𝑦 ∈𝐸 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑦
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Determining Priorities in Contention
• Now consider the exact effect of the anti-dependences

− We can schedule two anti-dependent instruction at once (instead of waiting 

for the predecessor)

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑥 = max(𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑥 + 𝑚𝑎𝑥 𝑥,𝑦 ∈𝐸 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑦 ,

𝑚𝑎𝑥 𝑥,𝑦 ∈𝐸′(𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑦)))

0

2 1 3
5

9
4

7
6 8

10
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List Scheduling Algorithm
cycle = 0
ready-list = root nodes in DPG  // Indicates the ready list
inflight-list = {}   // Indicates the executing instructions (at the pipeline)

while (ready-list or inflight-list not empty) {
 for op = (all nodes in ready-list in decreasing priority order) {
  if (an FU exists for op to start at cycle) {
   remove op from ready-list and add to inflight-list
   add op to schedule at time cycle
   if (op has an outgoing anti-edge)
    add all targets of op’s anti-edges that are ready to ready-list
  }
 }
 cycle = cycle + 1
 for op = (all nodes in inflight-list)
  if (op finishes at time cycle) {
   remove op from inflight-list
   check nodes waiting for op & add to ready-list if all operands available
  }
 }
}

What is there is a tie?
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Discussions on Breaking Ties

0

2 1 3
5

9
4

7
6 8

10

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑥 = max(𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑥 + 𝑚𝑎𝑥 𝑥,𝑦 ∈𝐸 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑦 ,

𝑚𝑎𝑥 𝑥,𝑦 ∈𝐸′(𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑦)))

0 2

1 3

5 6

4 7

8 9

10

Ready List

0, 2, 3, 5, 6, 9

1, 3, 5, 6, 9

5, 6, 9

4, 7, 8, 9

8, 9

10

Break ties by lower 

instruction number

Add takes two cycles;

Others take one cycles
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Discussions on Breaking Ties
𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑥 = max(𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑥 + 𝑚𝑎𝑥 𝑥,𝑦 ∈𝐸 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑦 ,

𝑚𝑎𝑥 𝑥,𝑦 ∈𝐸′(𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑦)))

0 2

1 5

3 8

4 7

6 9

10

Ready List

0, 2, 3, 5, 6, 9

1, 3, 5, 6, 9

3, 6, 8, 9

4, 6, 7, 9

6, 9

What about this?

10

0

2 1 3
5

9
4

7
6 8

10

Add takes two cycles;

Others take one cycles
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Alternative Approach

• Scheduling from backwards …

− Schedule the finish times instead of the start times

Forward Scheduling Backward Scheduling

0

2 1 3
5

9
4

7
6 8

10

0

2 1 3
5

9
4

7
6 8

10
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Backward List Scheduling

• Reverse the direction of edges & schedule the finish time

• This can be randomly good or bad …

Add takes two cycles;

Others take one cycles

0 5

1 3

2 8

4 7

6 9

10 10

0, 5

1, 3, 5

2, 3, 8

4, 7, 8

6, 9

0

2 1 3
5

9
4

7
6 8

10
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List Scheduling (Forward Scheduling)

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14 15

16

1 cyc 2 cyc 3 cyc

0 9

1 10

2 5 15

3 6

4 7 11

8 12

13

14

16

0, 1, 2, 3, 4, 9, 10

1, 2, 3, 4, 10

2, 3, 4, 5, 15

3, 4, 6

4, 7, 11

8, 12

13

14

-

-

16

Assume pipelined HW
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List Scheduling (Backward Scheduling)

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14 15

16

1 cyc 2 cyc 3 cyc

4

3 9

1 8

2 7 15

0 6 14

5 13

12

11

10

16

4

3, 4, 9

1, 3, 8

2, 7, 15

0, 6, 14, 15

5, 13, 14, 15

12, 13, 14, 15

11, 12, 13, 14, 15

10

-

16

Assume pipelined HW
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Advanced Approaches

• RBF scheduling:

− Schedule beach block M times forward and backward

− Break ties randomly for each trial



Fall 2025 Hunjun Lee 41

Basic Block Scheduling

• Basic block scheduling 

− List scheduling

− Interaction between register allocation and scheduling

• Global scheduling

− Cross-block code scheduling

• Software pipelining



Fall 2025 Hunjun Lee 42

Global Scheduling Example

• Machine Model:

− Fully-pipelined execution path

• LD takes two cycles + Others take one cycle

− Two parallel general-execution path

lw r0 0(r5) nop

nop nop

beqz r0, L nop

lw r2 0(r8) nop

nop nop

add r2 r2 r2 nop

sw 0(r8) r2 nop

lw r1 0(r6) nop

nop nop

sw 0(r7), r1 nop
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Basic Features

• Control equivalence: If i1 and i2 are control equivalent → if i1 is 

executed if and only if i2 is executed

• Speculation: An instruction is speculatively executed if it is 

executed before all the control-dependent instructions have 

been executed

➔ As long as there are (1) no side-effects, (2) no exception, (3) does not 

violative data dependence
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Code Motion

• Goal: Probabilistically reduce the execution time based on the 

frequency of the execution

• There are two different options:

− You may either move the instructions downwards to successor basic blocks

− You may also move the instructions upwards to predecessor basic 

blocks

Problem: to where and how to move the instructions?
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Global Scheduling Basics

• Schedule innermost loops first:

− The instructions should escape from the most executed basic blocks

• Apply upward code-motion to the following two options:

− Non-speculative: A control-equivalent block

− Speculative: A control-equivalent block of a dominating predecessor
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Compute data dependences;
For each B in BB list in R (in topological order w/o back edge) {
 CandInsts = ready instructions in NonSpeculative(B) U Speculative(B)
 // All the incoming dependences have already been scheduled
 For t slots until all the instructions in B has been scheduled {
  For n in CandInsts in priority order {
  // Prioritize non-speculative over speculative
   if (ok to move n to B && n has no resource conflicts @t) {
    // OK: do not speculatively move exception & store …
    // Same as the List Scheduling
    Schedule the inst to (B, t)
    Update resource commitments & dependences
   }
  }
 }
 Update CandInsts // some insts may become ready!
}

Scheduling Algorithm
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Scheduling Example

• Machine Model:

− Fully-pipelined execution path

• LD takes two cycles + Others take one cycle

− Two parallel general-execution path

• Priority order: B1, B2, B3

• Control equivalence: {B1, B3}, {B2}

• Non-speculative(B1) = {B1, B3}

• Speculative(B1) = {B2}

• Candidates = {i1, i3, i5}

i1 lw r0 0(r5) nop

nop nop

i2 beqz r0, L nop

i5 lw r2 0(r8) nop

nop nop

i6 add r2 r2 r2 nop

i7 sw 0(r8) r2 nop

i3 lw r1 0(r6) nop

nop nop

i4 sw 0(r7), r1 nop

B1

B3

B2
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Scheduling Example

i1 lw r0 0(r5) nop

nop nop

i2 beqz r0, L nop

i5 lw r2 0(r8) nop

nop nop

i6 add r2 r2 r2 nop

i7 sw 0(r8) r2 nop

i3 lw r1 0(r6) nop

nop nop

i4 sw 0(r7), r1 nop

B1

B3

B2

1

2

3

lw r0 0(r5) lw r2 0(r8)

lw r1 0(r6) nop

beqz r0, L add r2 r2 r2

lw r2 0(r8) nop

nop nop

add r2 r2 r2 nop

sw 0(r8) r2 nop

lw r1 0(r6) nop

nop nop

sw 0(r7), r1 nop

B1

B3

B2
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Unrolling and Instruction Scheduling - 1

• Assumption:

− Two general purpose pipelines

− (mem + alu take two cycles) & (branch & copy take one cycle)

• Unrolling enables a new scheduling opportunities

1: add r0 r0 1
2: load r1 0(r0)
3: add r1 r1 1
4: store r1 0(r0)
5: bne r1 0 Loop

Path0 Path1

1

2

3

4 5
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Unrolling and Instruction Scheduling - 2

1: add r0 r0 1
2: load r1 0(r0)
3: add r1 r1 1
4: store r1 0(r0)
5: beq r1 0 Exit

1: add r0 r0 1
2: load r1 0(r0)
3: add r1 r1 1
4: store r1 0(r0)
5: bne r1 0 Loop

Exit

1: add r0 r0 1
2: load r1 0(r0)
3: add r1 r1 1
4: store r1 0(r0)
5: beq r1 0 Exit

6: add r2 r0 1
7: load r3 0(r2)
8: add r3 r3 1
9: store r3 0(r2)
10: mv r0 r2
11: mv r1 r3
12: bne r1 0 Loop

Exit

Register renaming 

to remove false 

dependencies
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Unrolling and Instruction Scheduling - 2
Path0 Path1

1: add r0 r0 1 -

2: load r1 0(r0) 6: add r2 r0 1

3: add r1 r1 1 7: load r3 0(r2)

4: store r1 0(r0) 5: beq r1 0 Exit
8: add r3 r3 1 10: mv r0 r2

11: mv r1 r3 9: store r3 0(r2)
12: bne r1 0 Loop

1: add r0 r0 1
2: load r1 0(r0)
3: add r1 r1 1
4: store r1 0(r0)
5: beq r1 0 Exit

6: add r2 r0 1
7: load r3 0(r2)
8: add r3 r3 1
9: store r3 0(r2)
10: mv r0 r2 0
11: mv r1 r3 0
12: bne r1 0 Loop

Exit
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