777 lines
44 KiB
HTML
777 lines
44 KiB
HTML
<html><head><title>NRcdrom Progs. Server/Internet Use Prohibited.</title>
|
|
</head>
|
|
<body><h1>Numerical Recipes Routines by Chapter and Section</h1>
|
|
|
|
Chapter number links jump to the corresponding place in the
|
|
book Table of Contents. (Click on the Chapter number to get back.)
|
|
Routine name links jump to the listing
|
|
of the program. Example links jump to an example program that
|
|
shows the use of the routine.<p>
|
|
<h3><a name="C1"></A><A HREF="toc.htm#C1">Chapter
|
|
1</a></h3>
|
|
<menu>
|
|
<li>[1.0]
|
|
<a href="recipes/flmoon.c"><b>flmoon</b></a> calculate phases of the moon by date
|
|
(<a href="examples/xflmoon.c">example</a>)<li>[1.1]
|
|
<a href="recipes/julday.c"><b>julday</b></a> Julian Day number from calendar date
|
|
(<a href="examples/xjulday.c">example</a>)<li>[1.1]
|
|
<a href="recipes/badluk.c"><b>badluk</b></a> Friday the 13th when the moon is full
|
|
<li>[1.1]
|
|
<a href="recipes/caldat.c"><b>caldat</b></a> calendar date from Julian day number
|
|
(<a href="examples/xcaldat.c">example</a>)</menu>
|
|
<h3><a name="C2"></A><A HREF="toc.htm#C2">Chapter
|
|
2</a></h3>
|
|
<menu>
|
|
<li>[2.1]
|
|
<a href="recipes/gaussj.c"><b>gaussj</b></a> Gauss-Jordan matrix inversion and linear equation solution
|
|
(<a href="examples/xgaussj.c">example</a>)<li>[2.3]
|
|
<a href="recipes/ludcmp.c"><b>ludcmp</b></a> linear equation solution, LU decomposition
|
|
(<a href="examples/xludcmp.c">example</a>)<li>[2.3]
|
|
<a href="recipes/lubksb.c"><b>lubksb</b></a> linear equation solution, backsubstitution
|
|
(<a href="examples/xlubksb.c">example</a>)<li>[2.4]
|
|
<a href="recipes/tridag.c"><b>tridag</b></a> solution of tridiagonal systems
|
|
(<a href="examples/xtridag.c">example</a>)<li>[2.4]
|
|
<a href="recipes/banmul.c"><b>banmul</b></a> multiply vector by band diagonal matrix
|
|
(<a href="examples/xbanmul.c">example</a>)<li>[2.4]
|
|
<a href="recipes/bandec.c"><b>bandec</b></a> band diagonal systems, decomposition
|
|
(<a href="examples/xbandec.c">example</a>)<li>[2.4]
|
|
<a href="recipes/banbks.c"><b>banbks</b></a> band diagonal systems, backsubstitution
|
|
<li>[2.5]
|
|
<a href="recipes/mprove.c"><b>mprove</b></a> linear equation solution, iterative improvement
|
|
(<a href="examples/xmprove.c">example</a>)<li>[2.6]
|
|
<a href="recipes/svbksb.c"><b>svbksb</b></a> singular value backsubstitution
|
|
(<a href="examples/xsvbksb.c">example</a>)<li>[2.6]
|
|
<a href="recipes/svdcmp.c"><b>svdcmp</b></a> singular value decomposition of a matrix
|
|
(<a href="examples/xsvdcmp.c">example</a>)<li>[2.6]
|
|
<a href="recipes/pythag.c"><b>pythag</b></a> calculate (a^2+b^2)^{1/2} without overflow
|
|
<li>[2.7]
|
|
<a href="recipes/cyclic.c"><b>cyclic</b></a> solution of cyclic tridiagonal systems
|
|
(<a href="examples/xcyclic.c">example</a>)<li>[2.7]
|
|
<a href="recipes/sprsin.c"><b>sprsin</b></a> convert matrix to sparse format
|
|
(<a href="examples/xsprsin.c">example</a>)<li>[2.7]
|
|
<a href="recipes/sprsax.c"><b>sprsax</b></a> product of sparse matrix and vector
|
|
(<a href="examples/xsprsax.c">example</a>)<li>[2.7]
|
|
<a href="recipes/sprstx.c"><b>sprstx</b></a> product of transpose sparse matrix and vector
|
|
(<a href="examples/xsprstx.c">example</a>)<li>[2.7]
|
|
<a href="recipes/sprstp.c"><b>sprstp</b></a> transpose of sparse matrix
|
|
(<a href="examples/xsprstp.c">example</a>)<li>[2.7]
|
|
<a href="recipes/sprspm.c"><b>sprspm</b></a> pattern multiply two sparse matrices
|
|
(<a href="examples/xsprspm.c">example</a>)<li>[2.7]
|
|
<a href="recipes/sprstm.c"><b>sprstm</b></a> threshold multiply two sparse matrices
|
|
(<a href="examples/xsprstm.c">example</a>)<li>[2.7]
|
|
<a href="recipes/linbcg.c"><b>linbcg</b></a> biconjugate gradient solution of sparse systems
|
|
(<a href="examples/xlinbcg.c">example</a>)<li>[2.7]
|
|
<a href="recipes/snrm.c"><b>snrm </b></a> used by linbcg for vector norm
|
|
<li>[2.7]
|
|
<a href="recipes/atimes.c"><b>atimes</b></a> used by linbcg for sparse multiplication
|
|
<li>[2.7]
|
|
<a href="recipes/asolve.c"><b>asolve</b></a> used by linbcg for preconditioner
|
|
<li>[2.8]
|
|
<a href="recipes/vander.c"><b>vander</b></a> solve Vandermonde systems
|
|
(<a href="examples/xvander.c">example</a>)<li>[2.8]
|
|
<a href="recipes/toeplz.c"><b>toeplz</b></a> solve Toeplitz systems
|
|
(<a href="examples/xtoeplz.c">example</a>)<li>[2.9]
|
|
<a href="recipes/choldc.c"><b>choldc</b></a> Cholesky decomposition
|
|
<li>[2.9]
|
|
<a href="recipes/cholsl.c"><b>cholsl</b></a> Cholesky backsubstitution
|
|
(<a href="examples/xcholsl.c">example</a>)<li>[2.10]
|
|
<a href="recipes/qrdcmp.c"><b>qrdcmp</b></a> QR decomposition
|
|
(<a href="examples/xqrdcmp.c">example</a>)<li>[2.10]
|
|
<a href="recipes/qrsolv.c"><b>qrsolv</b></a> QR backsubstitution
|
|
(<a href="examples/xqrsolv.c">example</a>)<li>[2.10]
|
|
<a href="recipes/rsolv.c"><b>rsolv</b></a> right triangular backsubstitution
|
|
<li>[2.10]
|
|
<a href="recipes/qrupdt.c"><b>qrupdt</b></a> update a QR decomposition
|
|
(<a href="examples/xqrupdt.c">example</a>)<li>[2.10]
|
|
<a href="recipes/rotate.c"><b>rotate</b></a> Jacobi rotation used by qrupdt
|
|
</menu>
|
|
<h3><a name="C3"></A><A HREF="toc.htm#C3">Chapter
|
|
3</a></h3>
|
|
<menu>
|
|
<li>[3.1]
|
|
<a href="recipes/polint.c"><b>polint</b></a> polynomial interpolation
|
|
(<a href="examples/xpolint.c">example</a>)<li>[3.2]
|
|
<a href="recipes/ratint.c"><b>ratint</b></a> rational function interpolation
|
|
(<a href="examples/xratint.c">example</a>)<li>[3.3]
|
|
<a href="recipes/spline.c"><b>spline</b></a> construct a cubic spline
|
|
(<a href="examples/xspline.c">example</a>)<li>[3.3]
|
|
<a href="recipes/splint.c"><b>splint</b></a> cubic spline interpolation
|
|
(<a href="examples/xsplint.c">example</a>)<li>[3.4]
|
|
<a href="recipes/locate.c"><b>locate</b></a> search an ordered table by bisection
|
|
(<a href="examples/xlocate.c">example</a>)<li>[3.4]
|
|
<a href="recipes/hunt.c"><b>hunt</b></a> search a table when calls are correlated
|
|
(<a href="examples/xhunt.c">example</a>)<li>[3.5]
|
|
<a href="recipes/polcoe.c"><b>polcoe</b></a> polynomial coefficients from table of values
|
|
(<a href="examples/xpolcoe.c">example</a>)<li>[3.5]
|
|
<a href="recipes/polcof.c"><b>polcof</b></a> polynomial coefficients from table of values
|
|
(<a href="examples/xpolcof.c">example</a>)<li>[3.6]
|
|
<a href="recipes/polin2.c"><b>polin2</b></a> two-dimensional polynomial interpolation
|
|
(<a href="examples/xpolin2.c">example</a>)<li>[3.6]
|
|
<a href="recipes/bcucof.c"><b>bcucof</b></a> construct two-dimensional bicubic
|
|
(<a href="examples/xbcucof.c">example</a>)<li>[3.6]
|
|
<a href="recipes/bcuint.c"><b>bcuint</b></a> two-dimensional bicubic interpolation
|
|
(<a href="examples/xbcuint.c">example</a>)<li>[3.6]
|
|
<a href="recipes/splie2.c"><b>splie2</b></a> construct two-dimensional spline
|
|
(<a href="examples/xsplie2.c">example</a>)<li>[3.6]
|
|
<a href="recipes/splin2.c"><b>splin2</b></a> two-dimensional spline interpolation
|
|
(<a href="examples/xsplin2.c">example</a>)</menu>
|
|
<h3><a name="C4"></A><A HREF="toc.htm#C4">Chapter
|
|
4</a></h3>
|
|
<menu>
|
|
<li>[4.2]
|
|
<a href="recipes/trapzd.c"><b>trapzd</b></a> trapezoidal rule
|
|
(<a href="examples/xtrapzd.c">example</a>)<li>[4.2]
|
|
<a href="recipes/qtrap.c"><b>qtrap</b></a> integrate using trapezoidal rule
|
|
(<a href="examples/xqtrap.c">example</a>)<li>[4.2]
|
|
<a href="recipes/qsimp.c"><b>qsimp</b></a> integrate using Simpson's rule
|
|
(<a href="examples/xqsimp.c">example</a>)<li>[4.3]
|
|
<a href="recipes/qromb.c"><b>qromb</b></a> integrate using Romberg adaptive method
|
|
(<a href="examples/xqromb.c">example</a>)<li>[4.4]
|
|
<a href="recipes/midpnt.c"><b>midpnt</b></a> extended midpoint rule
|
|
(<a href="examples/xmidpnt.c">example</a>)<li>[4.4]
|
|
<a href="recipes/qromo.c"><b>qromo</b></a> integrate using open Romberg adaptive method
|
|
(<a href="examples/xqromo.c">example</a>)<li>[4.4]
|
|
<a href="recipes/midinf.c"><b>midinf</b></a> integrate a function on a semi-infinite interval
|
|
<li>[4.4]
|
|
<a href="recipes/midsql.c"><b>midsql</b></a> integrate a function with lower square-root singularity
|
|
<li>[4.4]
|
|
<a href="recipes/midsqu.c"><b>midsqu</b></a> integrate a function with upper square-root singularity
|
|
<li>[4.4]
|
|
<a href="recipes/midexp.c"><b>midexp</b></a> integrate a function that decreases exponentially
|
|
<li>[4.5]
|
|
<a href="recipes/qgaus.c"><b>qgaus</b></a> integrate a function by Gaussian quadratures
|
|
(<a href="examples/xqgaus.c">example</a>)<li>[4.5]
|
|
<a href="recipes/gauleg.c"><b>gauleg</b></a> Gauss-Legendre weights and abscissas
|
|
(<a href="examples/xgauleg.c">example</a>)<li>[4.5]
|
|
<a href="recipes/gaulag.c"><b>gaulag</b></a> Gauss-Laguerre weights and abscissas
|
|
(<a href="examples/xgaulag.c">example</a>)<li>[4.5]
|
|
<a href="recipes/gauher.c"><b>gauher</b></a> Gauss-Hermite weights and abscissas
|
|
(<a href="examples/xgauher.c">example</a>)<li>[4.5]
|
|
<a href="recipes/gaujac.c"><b>gaujac</b></a> Gauss-Jacobi weights and abscissas
|
|
(<a href="examples/xgaujac.c">example</a>)<li>[4.5]
|
|
<a href="recipes/gaucof.c"><b>gaucof</b></a> quadrature weights from orthogonal polynomials
|
|
(<a href="examples/xgaucof.c">example</a>)<li>[4.5]
|
|
<a href="recipes/orthog.c"><b>orthog</b></a> construct nonclassical orthogonal polynomials
|
|
(<a href="examples/xorthog.c">example</a>)<li>[4.6]
|
|
<a href="recipes/quad3d.c"><b>quad3d</b></a> integrate a function over a three-dimensional space
|
|
(<a href="examples/xquad3d.c">example</a>)</menu>
|
|
<h3><a name="C5"></A><A HREF="toc.htm#C5">Chapter
|
|
5</a></h3>
|
|
<menu>
|
|
<li>[5.1]
|
|
<a href="recipes/eulsum.c"><b>eulsum</b></a> sum a series by Euler--van Wijngaarden algorithm
|
|
(<a href="examples/xeulsum.c">example</a>)<li>[5.3]
|
|
<a href="recipes/ddpoly.c"><b>ddpoly</b></a> evaluate a polynomial and its derivatives
|
|
(<a href="examples/xddpoly.c">example</a>)<li>[5.3]
|
|
<a href="recipes/poldiv.c"><b>poldiv</b></a> divide one polynomial by another
|
|
(<a href="examples/xpoldiv.c">example</a>)<li>[5.3]
|
|
<a href="recipes/ratval.c"><b>ratval</b></a> evaluate a rational function
|
|
<li>[5.7]
|
|
<a href="recipes/dfridr.c"><b>dfridr</b></a> numerical derivative by Ridders' method
|
|
(<a href="examples/xdfridr.c">example</a>)<li>[5.8]
|
|
<a href="recipes/chebft.c"><b>chebft</b></a> fit a Chebyshev polynomial to a function
|
|
(<a href="examples/xchebft.c">example</a>)<li>[5.8]
|
|
<a href="recipes/chebev.c"><b>chebev</b></a> Chebyshev polynomial evaluation
|
|
(<a href="examples/xchebev.c">example</a>)<li>[5.9]
|
|
<a href="recipes/chder.c"><b>chder</b></a> derivative of a function already Chebyshev fitted
|
|
(<a href="examples/xchder.c">example</a>)<li>[5.9]
|
|
<a href="recipes/chint.c"><b>chint</b></a> integrate a function already Chebyshev fitted
|
|
(<a href="examples/xchint.c">example</a>)<li>[5.10]
|
|
<a href="recipes/chebpc.c"><b>chebpc</b></a> polynomial coefficients from a Chebyshev fit
|
|
(<a href="examples/xchebpc.c">example</a>)<li>[5.10]
|
|
<a href="recipes/pcshft.c"><b>pcshft</b></a> polynomial coefficients of a shifted polynomial
|
|
(<a href="examples/xpcshft.c">example</a>)<li>[5.11]
|
|
<a href="recipes/pccheb.c"><b>pccheb</b></a> inverse of chebpc; use to economize power series
|
|
(<a href="examples/xpccheb.c">example</a>)<li>[5.12]
|
|
<a href="recipes/pade.c"><b>pade</b></a> Pade approximant from power series coefficients
|
|
(<a href="examples/xpade.c">example</a>)<li>[5.13]
|
|
<a href="recipes/ratlsq.c"><b>ratlsq</b></a> rational fit by least-squares method
|
|
(<a href="examples/xratlsq.c">example</a>)</menu>
|
|
<h3><a name="C6"></A><A HREF="toc.htm#C6">Chapter
|
|
6</a></h3>
|
|
<menu>
|
|
<li>[6.1]
|
|
<a href="recipes/gammln.c"><b>gammln</b></a> logarithm of gamma function
|
|
(<a href="examples/xgammln.c">example</a>)<li>[6.1]
|
|
<a href="recipes/factrl.c"><b>factrl</b></a> factorial function
|
|
(<a href="examples/xfactrl.c">example</a>)<li>[6.1]
|
|
<a href="recipes/bico.c"><b>bico</b></a> binomial coefficients function
|
|
(<a href="examples/xbico.c">example</a>)<li>[6.1]
|
|
<a href="recipes/factln.c"><b>factln</b></a> logarithm of factorial function
|
|
(<a href="examples/xfactln.c">example</a>)<li>[6.1]
|
|
<a href="recipes/beta.c"><b>beta</b></a> beta function
|
|
(<a href="examples/xbeta.c">example</a>)<li>[6.2]
|
|
<a href="recipes/gammp.c"><b>gammp</b></a> incomplete gamma function
|
|
(<a href="examples/xgammp.c">example</a>)<li>[6.2]
|
|
<a href="recipes/gammq.c"><b>gammq</b></a> complement of incomplete gamma function
|
|
(<a href="examples/xgammq.c">example</a>)<li>[6.2]
|
|
<a href="recipes/gser.c"><b>gser</b></a> series used by gammp and gammq
|
|
(<a href="examples/xgser.c">example</a>)<li>[6.2]
|
|
<a href="recipes/gcf.c"><b>gcf</b></a> continued fraction used by gammp and gammq
|
|
(<a href="examples/xgcf.c">example</a>)<li>[6.2]
|
|
<a href="recipes/erff.c"><b>erf</b></a> error function
|
|
<li>[6.2]
|
|
<a href="recipes/erffc.c"><b>erfc</b></a> complementary error function
|
|
<li>[6.2]
|
|
<a href="recipes/erfcc.c"><b>erfcc</b></a> complementary error function, concise routine
|
|
(<a href="examples/xerfcc.c">example</a>)<li>[6.3]
|
|
<a href="recipes/expint.c"><b>expint</b></a> exponential integral E_n
|
|
(<a href="examples/xexpint.c">example</a>)<li>[6.3]
|
|
<a href="recipes/ei.c"><b>ei</b></a> exponential integral Ei
|
|
(<a href="examples/xei.c">example</a>)<li>[6.4]
|
|
<a href="recipes/betai.c"><b>betai</b></a> incomplete beta function
|
|
(<a href="examples/xbetai.c">example</a>)<li>[6.4]
|
|
<a href="recipes/betacf.c"><b>betacf</b></a> continued fraction used by betai
|
|
<li>[6.5]
|
|
<a href="recipes/bessj0.c"><b>bessj0</b></a> Bessel function J_0
|
|
(<a href="examples/xbessj0.c">example</a>)<li>[6.5]
|
|
<a href="recipes/bessy0.c"><b>bessy0</b></a> Bessel function Y_0
|
|
(<a href="examples/xbessy0.c">example</a>)<li>[6.5]
|
|
<a href="recipes/bessj1.c"><b>bessj1</b></a> Bessel function J_1
|
|
(<a href="examples/xbessj1.c">example</a>)<li>[6.5]
|
|
<a href="recipes/bessy1.c"><b>bessy1</b></a> Bessel function Y_1
|
|
(<a href="examples/xbessy1.c">example</a>)<li>[6.5]
|
|
<a href="recipes/bessy.c"><b>bessy</b></a> Bessel function Y of general integer order
|
|
(<a href="examples/xbessy.c">example</a>)<li>[6.5]
|
|
<a href="recipes/bessj.c"><b>bessj</b></a> Bessel function J of general integer order
|
|
(<a href="examples/xbessj.c">example</a>)<li>[6.6]
|
|
<a href="recipes/bessi0.c"><b>bessi0</b></a> modified Bessel function I_0
|
|
(<a href="examples/xbessi0.c">example</a>)<li>[6.6]
|
|
<a href="recipes/bessk0.c"><b>bessk0</b></a> modified Bessel function K_0
|
|
(<a href="examples/xbessk0.c">example</a>)<li>[6.6]
|
|
<a href="recipes/bessi1.c"><b>bessi1</b></a> modified Bessel function I_1
|
|
(<a href="examples/xbessi1.c">example</a>)<li>[6.6]
|
|
<a href="recipes/bessk1.c"><b>bessk1</b></a> modified Bessel function K_1
|
|
(<a href="examples/xbessk1.c">example</a>)<li>[6.6]
|
|
<a href="recipes/bessk.c"><b>bessk</b></a> modified Bessel function K of integer order
|
|
(<a href="examples/xbessk.c">example</a>)<li>[6.6]
|
|
<a href="recipes/bessi.c"><b>bessi</b></a> modified Bessel function I of integer order
|
|
(<a href="examples/xbessi.c">example</a>)<li>[6.7]
|
|
<a href="recipes/bessjy.c"><b>bessjy</b></a> Bessel functions of fractional order
|
|
(<a href="examples/xbessjy.c">example</a>)<li>[6.7]
|
|
<a href="recipes/beschb.c"><b>beschb</b></a> Chebyshev expansion used by bessjy
|
|
(<a href="examples/xbeschb.c">example</a>)<li>[6.7]
|
|
<a href="recipes/bessik.c"><b>bessik</b></a> modified Bessel functions of fractional order
|
|
(<a href="examples/xbessik.c">example</a>)<li>[6.7]
|
|
<a href="recipes/airy.c"><b>airy </b></a> Airy functions
|
|
<li>[6.7]
|
|
<a href="recipes/sphbes.c"><b>sphbes</b></a> spherical Bessel functions j_n and y_n
|
|
(<a href="examples/xsphbes.c">example</a>)<li>[6.8]
|
|
<a href="recipes/plgndr.c"><b>plgndr</b></a> Legendre polynomials, associated (spherical harmonics)
|
|
(<a href="examples/xplgndr.c">example</a>)<li>[6.9]
|
|
<a href="recipes/frenel.c"><b>frenel</b></a> Fresnel integrals S(x) and C(x)
|
|
(<a href="examples/xfrenel.c">example</a>)<li>[6.9]
|
|
<a href="recipes/cisi.c"><b>cisi </b></a> cosine and sine integrals Ci and Si
|
|
<li>[6.10]
|
|
<a href="recipes/dawson.c"><b>dawson</b></a> Dawson's integral
|
|
(<a href="examples/xdawson.c">example</a>)<li>[6.11]
|
|
<a href="recipes/rf.c"><b>rf</b></a> Carlson's elliptic integral of the first kind
|
|
(<a href="examples/xrf.c">example</a>)<li>[6.11]
|
|
<a href="recipes/rd.c"><b>rd</b></a> Carlson's elliptic integral of the second kind
|
|
(<a href="examples/xrd.c">example</a>)<li>[6.11]
|
|
<a href="recipes/rj.c"><b>rj</b></a> Carlson's elliptic integral of the third kind
|
|
(<a href="examples/xrj.c">example</a>)<li>[6.11]
|
|
<a href="recipes/rc.c"><b>rc</b></a> Carlson's degenerate elliptic integral
|
|
(<a href="examples/xrc.c">example</a>)<li>[6.11]
|
|
<a href="recipes/ellf.c"><b>ellf</b></a> Legendre elliptic integral of the first kind
|
|
(<a href="examples/xellf.c">example</a>)<li>[6.11]
|
|
<a href="recipes/elle.c"><b>elle</b></a> Legendre elliptic integral of the second kind
|
|
(<a href="examples/xelle.c">example</a>)<li>[6.11]
|
|
<a href="recipes/ellpi.c"><b>ellpi</b></a> Legendre elliptic integral of the third kind
|
|
(<a href="examples/xellpi.c">example</a>)<li>[6.11]
|
|
<a href="recipes/sncndn.c"><b>sncndn</b></a> Jacobian elliptic functions
|
|
(<a href="examples/xsncndn.c">example</a>)<li>[6.12]
|
|
<a href="recipes/hypgeo.c"><b>hypgeo</b></a> complex hypergeometric function
|
|
(<a href="examples/xhypgeo.c">example</a>)<li>[6.12]
|
|
<a href="recipes/hypser.c"><b>hypser</b></a> complex hypergeometric function, series evaluation
|
|
<li>[6.12]
|
|
<a href="recipes/hypdrv.c"><b>hypdrv</b></a> complex hypergeometric function, derivative of
|
|
</menu>
|
|
<h3><a name="C7"></A><A HREF="toc.htm#C7">Chapter
|
|
7</a></h3>
|
|
<menu>
|
|
<li>[7.1]
|
|
<a href="recipes/ran0.c"><b>ran0</b></a> random deviate by Park and Miller minimal standard
|
|
<li>[7.1]
|
|
<a href="recipes/ran1.c"><b>ran1</b></a> random deviate, minimal standard plus shuffle
|
|
<li>[7.1]
|
|
<a href="recipes/ran2.c"><b>ran2</b></a> random deviate by L'Ecuyer long period plus shuffle
|
|
<li>[7.1]
|
|
<a href="recipes/ran3.c"><b>ran3</b></a> random deviate by Knuth subtractive method
|
|
<li>[7.2]
|
|
<a href="recipes/expdev.c"><b>expdev</b></a> exponential random deviates
|
|
(<a href="examples/xexpdev.c">example</a>)<li>[7.2]
|
|
<a href="recipes/gasdev.c"><b>gasdev</b></a> normally distributed random deviates
|
|
(<a href="examples/xgasdev.c">example</a>)<li>[7.3]
|
|
<a href="recipes/gamdev.c"><b>gamdev</b></a> gamma-law distribution random deviates
|
|
(<a href="examples/xgamdev.c">example</a>)<li>[7.3]
|
|
<a href="recipes/poidev.c"><b>poidev</b></a> Poisson distributed random deviates
|
|
(<a href="examples/xpoidev.c">example</a>)<li>[7.3]
|
|
<a href="recipes/bnldev.c"><b>bnldev</b></a> binomial distributed random deviates
|
|
(<a href="examples/xbnldev.c">example</a>)<li>[7.4]
|
|
<a href="recipes/irbit1.c"><b>irbit1</b></a> random bit sequence
|
|
(<a href="examples/xirbit1.c">example</a>)<li>[7.4]
|
|
<a href="recipes/irbit2.c"><b>irbit2</b></a> random bit sequence
|
|
(<a href="examples/xirbit2.c">example</a>)<li>[7.5]
|
|
<a href="recipes/psdes.c"><b>psdes</b></a> ``pseudo-DES'' hashing of 64 bits
|
|
(<a href="examples/xpsdes.c">example</a>)<li>[7.5]
|
|
<a href="recipes/ran4.c"><b>ran4</b></a> random deviates from DES-like hashing
|
|
(<a href="examples/xran4.c">example</a>)<li>[7.7]
|
|
<a href="recipes/sobseq.c"><b>sobseq</b></a> Sobol's quasi-random sequence
|
|
(<a href="examples/xsobseq.c">example</a>)<li>[7.8]
|
|
<a href="recipes/vegas.c"><b>vegas</b></a> adaptive multidimensional Monte Carlo integration
|
|
(<a href="examples/xvegas.c">example</a>)<li>[7.8]
|
|
<a href="recipes/rebin.c"><b>rebin</b></a> sample rebinning used by vegas
|
|
<li>[7.8]
|
|
<a href="recipes/miser.c"><b>miser</b></a> recursive multidimensional Monte Carlo integration
|
|
(<a href="examples/xmiser.c">example</a>)<li>[7.8]
|
|
<a href="recipes/ranpt.c"><b>ranpt</b></a> get random point, used by miser
|
|
</menu>
|
|
<h3><a name="C8"></A><A HREF="toc.htm#C8">Chapter
|
|
8</a></h3>
|
|
<menu>
|
|
<li>[8.1]
|
|
<a href="recipes/piksrt.c"><b>piksrt</b></a> sort an array by straight insertion
|
|
(<a href="examples/xpiksrt.c">example</a>)<li>[8.1]
|
|
<a href="recipes/piksr2.c"><b>piksr2</b></a> sort two arrays by straight insertion
|
|
(<a href="examples/xpiksr2.c">example</a>)<li>[8.1]
|
|
<a href="recipes/shell.c"><b>shell</b></a> sort an array by Shell's method
|
|
(<a href="examples/xshell.c">example</a>)<li>[8.2]
|
|
<a href="recipes/sort.c"><b>sort</b></a> sort an array by quicksort method
|
|
(<a href="examples/xsort.c">example</a>)<li>[8.2]
|
|
<a href="recipes/sort2.c"><b>sort2</b></a> sort two arrays by quicksort method
|
|
(<a href="examples/xsort2.c">example</a>)<li>[8.3]
|
|
<a href="recipes/hpsort.c"><b>hpsort</b></a> sort an array by heapsort method
|
|
(<a href="examples/xhpsort.c">example</a>)<li>[8.4]
|
|
<a href="recipes/indexx.c"><b>indexx</b></a> construct an index for an array
|
|
(<a href="examples/xindexx.c">example</a>)<li>[8.4]
|
|
<a href="recipes/sort3.c"><b>sort3</b></a> sort, use an index to sort 3 or more arrays
|
|
(<a href="examples/xsort3.c">example</a>)<li>[8.4]
|
|
<a href="recipes/rank.c"><b>rank</b></a> construct a rank table for an array
|
|
(<a href="examples/xrank.c">example</a>)<li>[8.5]
|
|
<a href="recipes/select.c"><b>select</b></a> find the Nth largest in an array
|
|
(<a href="examples/xselect.c">example</a>)<li>[8.5]
|
|
<a href="recipes/selip.c"><b>selip</b></a> find the Nth largest, without altering an array
|
|
(<a href="examples/xselip.c">example</a>)<li>[8.5]
|
|
<a href="recipes/hpsel.c"><b>hpsel</b></a> find M largest values, without altering an array
|
|
(<a href="examples/xhpsel.c">example</a>)<li>[8.6]
|
|
<a href="recipes/eclass.c"><b>eclass</b></a> determine equivalence classes from list
|
|
(<a href="examples/xeclass.c">example</a>)<li>[8.6]
|
|
<a href="recipes/eclazz.c"><b>eclazz</b></a> determine equivalence classes from procedure
|
|
(<a href="examples/xeclazz.c">example</a>)</menu>
|
|
<h3><a name="C9"></A><A HREF="toc.htm#C9">Chapter
|
|
9</a></h3>
|
|
<menu>
|
|
<li>[9.0]
|
|
<a href="recipes/scrsho.c"><b>scrsho</b></a> graph a function to search for roots
|
|
(<a href="examples/xscrsho.c">example</a>)<li>[9.1]
|
|
<a href="recipes/zbrac.c"><b>zbrac</b></a> outward search for brackets on roots
|
|
(<a href="examples/xzbrac.c">example</a>)<li>[9.1]
|
|
<a href="recipes/zbrak.c"><b>zbrak</b></a> inward search for brackets on roots
|
|
(<a href="examples/xzbrak.c">example</a>)<li>[9.1]
|
|
<a href="recipes/rtbis.c"><b>rtbis</b></a> find root of a function by bisection
|
|
(<a href="examples/xrtbis.c">example</a>)<li>[9.2]
|
|
<a href="recipes/rtflsp.c"><b>rtflsp</b></a> find root of a function by false-position
|
|
(<a href="examples/xrtflsp.c">example</a>)<li>[9.2]
|
|
<a href="recipes/rtsec.c"><b>rtsec</b></a> find root of a function by secant method
|
|
(<a href="examples/xrtsec.c">example</a>)<li>[9.2]
|
|
<a href="recipes/zriddr.c"><b>zriddr</b></a> find root of a function by Ridders' method
|
|
(<a href="examples/xzriddr.c">example</a>)<li>[9.3]
|
|
<a href="recipes/zbrent.c"><b>zbrent</b></a> find root of a function by Brent's method
|
|
(<a href="examples/xzbrent.c">example</a>)<li>[9.4]
|
|
<a href="recipes/rtnewt.c"><b>rtnewt</b></a> find root of a function by Newton-Raphson
|
|
(<a href="examples/xrtnewt.c">example</a>)<li>[9.4]
|
|
<a href="recipes/rtsafe.c"><b>rtsafe</b></a> find root of a function by Newton-Raphson and bisection
|
|
(<a href="examples/xrtsafe.c">example</a>)<li>[9.5]
|
|
<a href="recipes/laguer.c"><b>laguer</b></a> find a root of a polynomial by Laguerre's method
|
|
(<a href="examples/xlaguer.c">example</a>)<li>[9.5]
|
|
<a href="recipes/zroots.c"><b>zroots</b></a> roots of a polynomial by Laguerre's method with deflation
|
|
(<a href="examples/xzroots.c">example</a>)<li>[9.5]
|
|
<a href="recipes/zrhqr.c"><b>zrhqr</b></a> roots of a polynomial by eigenvalue methods
|
|
(<a href="examples/xzrhqr.c">example</a>)<li>[9.5]
|
|
<a href="recipes/qroot.c"><b>qroot</b></a> complex or double root of a polynomial, Bairstow
|
|
(<a href="examples/xqroot.c">example</a>)<li>[9.6]
|
|
<a href="recipes/mnewt.c"><b>mnewt</b></a> Newton's method for systems of equations
|
|
(<a href="examples/xmnewt.c">example</a>)<li>[9.7]
|
|
<a href="recipes/lnsrch.c"><b>lnsrch</b></a> search along a line, used by newt
|
|
<li>[9.7]
|
|
<a href="recipes/newt.c"><b>newt</b></a> globally convergent multi-dimensional Newton's method
|
|
(<a href="examples/xnewt.c">example</a>)<li>[9.7]
|
|
<a href="recipes/fdjac.c"><b>fdjac</b></a> finite-difference Jacobian, used by newt
|
|
<li>[9.7]
|
|
<a href="recipes/fmin.c"><b>fmin</b></a> norm of a vector function, used by newt
|
|
<li>[9.7]
|
|
<a href="recipes/broydn.c"><b>broydn</b></a> secant method for systems of equations
|
|
(<a href="examples/xbroydn.c">example</a>)</menu>
|
|
<h3><a name="C10"></A><A HREF="toc.htm#C10">Chapter
|
|
10</a></h3>
|
|
<menu>
|
|
<li>[10.1]
|
|
<a href="recipes/mnbrak.c"><b>mnbrak</b></a> bracket the minimum of a function
|
|
(<a href="examples/xmnbrak.c">example</a>)<li>[10.1]
|
|
<a href="recipes/golden.c"><b>golden</b></a> find minimum of a function by golden section search
|
|
(<a href="examples/xgolden.c">example</a>)<li>[10.2]
|
|
<a href="recipes/brent.c"><b>brent</b></a> find minimum of a function by Brent's method
|
|
(<a href="examples/xbrent.c">example</a>)<li>[10.3]
|
|
<a href="recipes/dbrent.c"><b>dbrent</b></a> find minimum of a function using derivative information
|
|
(<a href="examples/xdbrent.c">example</a>)<li>[10.4]
|
|
<a href="recipes/amoeba.c"><b>amoeba</b></a> minimize in N-dimensions by downhill simplex method
|
|
(<a href="examples/xamoeba.c">example</a>)<li>[10.4]
|
|
<a href="recipes/amotry.c"><b>amotry</b></a> evaluate a trial point, used by amoeba
|
|
<li>[10.5]
|
|
<a href="recipes/powell.c"><b>powell</b></a> minimize in N-dimensions by Powell's method
|
|
(<a href="examples/xpowell.c">example</a>)<li>[10.5]
|
|
<a href="recipes/linmin.c"><b>linmin</b></a> minimum of a function along a ray in N-dimensions
|
|
(<a href="examples/xlinmin.c">example</a>)<li>[10.5]
|
|
<a href="recipes/f1dim.c"><b>f1dim</b></a> function used by LINMIN
|
|
(<a href="examples/xf1dim.c">example</a>)<li>[10.6]
|
|
<a href="recipes/frprmn.c"><b>frprmn</b></a> minimize in N-dimensions by conjugate gradient
|
|
(<a href="examples/xfrprmn.c">example</a>)<li>[10.6]
|
|
<a href="recipes/df1dim.c"><b>df1dim</b></a> alternative function used by LINMIN
|
|
(<a href="examples/xdf1dim.c">example</a>)<li>[10.7]
|
|
<a href="recipes/dfpmin.c"><b>dfpmin</b></a> minimize in N-dimensions by variable metric method
|
|
(<a href="examples/xdfpmin.c">example</a>)<li>[10.8]
|
|
<a href="recipes/simplx.c"><b>simplx</b></a> linear programming maximization of a linear function
|
|
(<a href="examples/xsimplx.c">example</a>)<li>[10.8]
|
|
<a href="recipes/simp1.c"><b>simp1</b></a> linear programming, used by SIMPLX
|
|
<li>[10.8]
|
|
<a href="recipes/simp2.c"><b>simp2</b></a> linear programming, used by SIMPLX
|
|
<li>[10.8]
|
|
<a href="recipes/simp3.c"><b>simp3</b></a> linear programming, used by SIMPLX
|
|
<li>[10.9]
|
|
<a href="recipes/anneal.c"><b>anneal</b></a> traveling salesman problem by simulated annealing
|
|
(<a href="examples/xanneal.c">example</a>)<li>[10.9]
|
|
<a href="recipes/revcst.c"><b>revcst</b></a> cost of a reversal, used by anneal
|
|
<li>[10.9]
|
|
<a href="recipes/reverse.c"><b>reverse</b></a> do a reversal, used by anneal
|
|
<li>[10.9]
|
|
<a href="recipes/trncst.c"><b>trncst</b></a> cost of a transposition, used by anneal
|
|
<li>[10.9]
|
|
<a href="recipes/trnspt.c"><b>trnspt</b></a> do a transposition, used by anneal
|
|
<li>[10.9]
|
|
<a href="recipes/metrop.c"><b>metrop</b></a> Metropolis algorithm, used by anneal
|
|
<li>[10.9]
|
|
<a href="recipes/amebsa.c"><b>amebsa</b></a> simulated annealing in continuous spaces
|
|
(<a href="examples/xamebsa.c">example</a>)<li>[10.9]
|
|
<a href="recipes/amotsa.c"><b>amotsa</b></a> evaluate a trial point, used by amebsa
|
|
</menu>
|
|
<h3><a name="C11"></A><A HREF="toc.htm#C11">Chapter
|
|
11</a></h3>
|
|
<menu>
|
|
<li>[11.1]
|
|
<a href="recipes/jacobi.c"><b>jacobi</b></a> eigenvalues and eigenvectors of a symmetric matrix
|
|
(<a href="examples/xjacobi.c">example</a>)<li>[11.1]
|
|
<a href="recipes/eigsrt.c"><b>eigsrt</b></a> eigenvectors, sorts into order by eigenvalue
|
|
(<a href="examples/xeigsrt.c">example</a>)<li>[11.2]
|
|
<a href="recipes/tred2.c"><b>tred2</b></a> Householder reduction of a real, symmetric matrix
|
|
(<a href="examples/xtred2.c">example</a>)<li>[11.3]
|
|
<a href="recipes/tqli.c"><b>tqli</b></a> eigensolution of a symmetric tridiagonal matrix
|
|
(<a href="examples/xtqli.c">example</a>)<li>[11.5]
|
|
<a href="recipes/balanc.c"><b>balanc</b></a> balance a nonsymmetric matrix
|
|
(<a href="examples/xbalanc.c">example</a>)<li>[11.5]
|
|
<a href="recipes/elmhes.c"><b>elmhes</b></a> reduce a general matrix to Hessenberg form
|
|
(<a href="examples/xelmhes.c">example</a>)<li>[11.6]
|
|
<a href="recipes/hqr.c"><b>hqr</b></a> eigenvalues of a Hessenberg matrix
|
|
(<a href="examples/xhqr.c">example</a>)</menu>
|
|
<h3><a name="C12"></A><A HREF="toc.htm#C12">Chapter
|
|
12</a></h3>
|
|
<menu>
|
|
<li>[12.2]
|
|
<a href="recipes/four1.c"><b>four1</b></a> fast Fourier transform (FFT) in one dimension
|
|
(<a href="examples/xfour1.c">example</a>)<li>[12.3]
|
|
<a href="recipes/twofft.c"><b>twofft</b></a> fast Fourier transform of two real functions
|
|
(<a href="examples/xtwofft.c">example</a>)<li>[12.3]
|
|
<a href="recipes/realft.c"><b>realft</b></a> fast Fourier transform of a single real function
|
|
(<a href="examples/xrealft.c">example</a>)<li>[12.3]
|
|
<a href="recipes/sinft.c"><b>sinft</b></a> fast sine transform
|
|
(<a href="examples/xsinft.c">example</a>)<li>[12.3]
|
|
<a href="recipes/cosft1.c"><b>cosft1</b></a> fast cosine transform with endpoints
|
|
(<a href="examples/xcosft1.c">example</a>)<li>[12.3]
|
|
<a href="recipes/cosft2.c"><b>cosft2</b></a> ``staggered'' fast cosine transform
|
|
(<a href="examples/xcosft2.c">example</a>)<li>[12.4]
|
|
<a href="recipes/fourn.c"><b>fourn</b></a> fast Fourier transform in multidimensions
|
|
(<a href="examples/xfourn.c">example</a>)<li>[12.5]
|
|
<a href="recipes/rlft3.c"><b>rlft3</b></a> FFT of real data in two or three dimensions
|
|
(<a href="examples/xrlft3.c">example</a>)<li>[12.6]
|
|
<a href="recipes/fourfs.c"><b>fourfs</b></a> FFT for huge data sets on external media
|
|
(<a href="examples/xfourfs.c">example</a>)<li>[12.6]
|
|
<a href="recipes/fourew.c"><b>fourew</b></a> rewind and permute files, used by fourfs
|
|
</menu>
|
|
<h3><a name="C13"></A><A HREF="toc.htm#C13">Chapter
|
|
13</a></h3>
|
|
<menu>
|
|
<li>[13.1]
|
|
<a href="recipes/convlv.c"><b>convlv</b></a> convolution or deconvolution of data using FFT
|
|
(<a href="examples/xconvlv.c">example</a>)<li>[13.2]
|
|
<a href="recipes/correl.c"><b>correl</b></a> correlation or autocorrelation of data using FFT
|
|
(<a href="examples/xcorrel.c">example</a>)<li>[13.4]
|
|
<a href="recipes/spctrm.c"><b>spctrm</b></a> power spectrum estimation using FFT
|
|
(<a href="examples/xspctrm.c">example</a>)<li>[13.6]
|
|
<a href="recipes/memcof.c"><b>memcof</b></a> evaluate maximum entropy (MEM) coefficients
|
|
(<a href="examples/xmemcof.c">example</a>)<li>[13.6]
|
|
<a href="recipes/fixrts.c"><b>fixrts</b></a> reflect roots of a polynomial into unit circle
|
|
(<a href="examples/xfixrts.c">example</a>)<li>[13.6]
|
|
<a href="recipes/predic.c"><b>predic</b></a> linear prediction using MEM coefficients
|
|
(<a href="examples/xpredic.c">example</a>)<li>[13.7]
|
|
<a href="recipes/evlmem.c"><b>evlmem</b></a> power spectral estimation from MEM coefficients
|
|
(<a href="examples/xevlmem.c">example</a>)<li>[13.8]
|
|
<a href="recipes/period.c"><b>period</b></a> power spectrum of unevenly sampled data
|
|
(<a href="examples/xperiod.c">example</a>)<li>[13.8]
|
|
<a href="recipes/fasper.c"><b>fasper</b></a> power spectrum of unevenly sampled larger data sets
|
|
(<a href="examples/xfasper.c">example</a>)<li>[13.8]
|
|
<a href="recipes/spread.c"><b>spread</b></a> extirpolate value into array, used by fasper
|
|
<li>[13.9]
|
|
<a href="recipes/dftcor.c"><b>dftcor</b></a> compute endpoint corrections for Fourier integrals
|
|
<li>[13.9]
|
|
<a href="recipes/dftint.c"><b>dftint</b></a> high-accuracy Fourier integrals
|
|
(<a href="examples/xdftint.c">example</a>)<li>[13.10]
|
|
<a href="recipes/wt1.c"><b>wt1 </b></a> one-dimensional discrete wavelet transform
|
|
<li>[13.10]
|
|
<a href="recipes/daub4.c"><b>daub4</b></a> Daubechies 4-coefficient wavelet filter
|
|
<li>[13.10]
|
|
<a href="recipes/pwtset.c"><b>pwtset</b></a> initialize coefficients for pwt
|
|
<li>[13.10]
|
|
<a href="recipes/pwt.c"><b>pwt </b></a> partial wavelet transform
|
|
<li>[13.10]
|
|
<a href="recipes/wtn.c"><b>wtn </b></a> multidimensional discrete wavelet transform
|
|
</menu>
|
|
<h3><a name="C14"></A><A HREF="toc.htm#C14">Chapter
|
|
14</a></h3>
|
|
<menu>
|
|
<li>[14.1]
|
|
<a href="recipes/moment.c"><b>moment</b></a> calculate moments of a data set
|
|
(<a href="examples/xmoment.c">example</a>)<li>[14.2]
|
|
<a href="recipes/ttest.c"><b>ttest</b></a> Student's t-test for difference of means
|
|
(<a href="examples/xttest.c">example</a>)<li>[14.2]
|
|
<a href="recipes/avevar.c"><b>avevar</b></a> calculate mean and variance of a data set
|
|
(<a href="examples/xavevar.c">example</a>)<li>[14.2]
|
|
<a href="recipes/tutest.c"><b>tutest</b></a> Student's t-test for means, case of unequal variances
|
|
(<a href="examples/xtutest.c">example</a>)<li>[14.2]
|
|
<a href="recipes/tptest.c"><b>tptest</b></a> Student's t-test for means, case of paired data
|
|
(<a href="examples/xtptest.c">example</a>)<li>[14.2]
|
|
<a href="recipes/ftest.c"><b>ftest</b></a> F-test for difference of variances
|
|
(<a href="examples/xftest.c">example</a>)<li>[14.3]
|
|
<a href="recipes/chsone.c"><b>chsone</b></a> chi-square test for difference between data and model
|
|
(<a href="examples/xchsone.c">example</a>)<li>[14.3]
|
|
<a href="recipes/chstwo.c"><b>chstwo</b></a> chi-square test for difference between two data sets
|
|
(<a href="examples/xchstwo.c">example</a>)<li>[14.3]
|
|
<a href="recipes/ksone.c"><b>ksone</b></a> Kolmogorov-Smirnov test of data against model
|
|
(<a href="examples/xksone.c">example</a>)<li>[14.3]
|
|
<a href="recipes/kstwo.c"><b>kstwo</b></a> Kolmogorov-Smirnov test between two data sets
|
|
(<a href="examples/xkstwo.c">example</a>)<li>[14.3]
|
|
<a href="recipes/probks.c"><b>probks</b></a> Kolmogorov-Smirnov probability function
|
|
(<a href="examples/xprobks.c">example</a>)<li>[14.4]
|
|
<a href="recipes/cntab1.c"><b>cntab1</b></a> contingency table analysis using chi-square
|
|
(<a href="examples/xcntab1.c">example</a>)<li>[14.4]
|
|
<a href="recipes/cntab2.c"><b>cntab2</b></a> contingency table analysis using entropy measure
|
|
(<a href="examples/xcntab2.c">example</a>)<li>[14.5]
|
|
<a href="recipes/pearsn.c"><b>pearsn</b></a> Pearson's correlation between two data sets
|
|
(<a href="examples/xpearsn.c">example</a>)<li>[14.6]
|
|
<a href="recipes/spear.c"><b>spear</b></a> Spearman's rank correlation between two data sets
|
|
(<a href="examples/xspear.c">example</a>)<li>[14.6]
|
|
<a href="recipes/crank.c"><b>crank</b></a> replaces array elements by their rank
|
|
(<a href="examples/xcrank.c">example</a>)<li>[14.6]
|
|
<a href="recipes/kendl1.c"><b>kendl1</b></a> correlation between two data sets, Kendall's tau
|
|
(<a href="examples/xkendl1.c">example</a>)<li>[14.6]
|
|
<a href="recipes/kendl2.c"><b>kendl2</b></a> contingency table analysis using Kendall's tau
|
|
(<a href="examples/xkendl2.c">example</a>)<li>[14.7]
|
|
<a href="recipes/ks2d1s.c"><b>ks2d1s</b></a> K--S test in two dimensions, data vs. model
|
|
(<a href="examples/xks2d1s.c">example</a>)<li>[14.7]
|
|
<a href="recipes/quadct.c"><b>quadct</b></a> count points by quadrants, used by ks2d1s
|
|
<li>[14.7]
|
|
<a href="recipes/quadvl.c"><b>quadvl</b></a> quadrant probabilities, used by ks2d1s
|
|
<li>[14.7]
|
|
<a href="recipes/ks2d2s.c"><b>ks2d2s</b></a> K--S test in two dimensions, data vs. data
|
|
(<a href="examples/xks2d2s.c">example</a>)<li>[14.8]
|
|
<a href="recipes/savgol.c"><b>savgol</b></a> Savitzky-Golay smoothing coefficients
|
|
(<a href="examples/xsavgol.c">example</a>)</menu>
|
|
<h3><a name="C15"></A><A HREF="toc.htm#C15">Chapter
|
|
15</a></h3>
|
|
<menu>
|
|
<li>[15.2]
|
|
<a href="recipes/fit.c"><b>fit</b></a> least-squares fit data to a straight line
|
|
(<a href="examples/xfit.c">example</a>)<li>[15.3]
|
|
<a href="recipes/fitexy.c"><b>fitexy</b></a> fit data to a straight line, errors in both x and y
|
|
(<a href="examples/xfitexy.c">example</a>)<li>[15.3]
|
|
<a href="recipes/chixy.c"><b>chixy</b></a> used by fitexy to calculate a chi^2
|
|
<li>[15.4]
|
|
<a href="recipes/lfit.c"><b>lfit</b></a> general linear least-squares fit by normal equations
|
|
(<a href="examples/xlfit.c">example</a>)<li>[15.4]
|
|
<a href="recipes/covsrt.c"><b>covsrt</b></a> rearrange covariance matrix, used by LFIT
|
|
(<a href="examples/xcovsrt.c">example</a>)<li>[15.4]
|
|
<a href="recipes/svdfit.c"><b>svdfit</b></a> linear least-squares fit by singular value decomposition
|
|
(<a href="examples/xsvdfit.c">example</a>)<li>[15.4]
|
|
<a href="recipes/svdvar.c"><b>svdvar</b></a> variances from singular value decomposition
|
|
(<a href="examples/xsvdvar.c">example</a>)<li>[15.4]
|
|
<a href="recipes/fpoly.c"><b>fpoly</b></a> fit a polynomial using LFIT or SVDFIT
|
|
(<a href="examples/xfpoly.c">example</a>)<li>[15.4]
|
|
<a href="recipes/fleg.c"><b>fleg</b></a> fit a Legendre polynomial using LFIT or SVDFIT
|
|
(<a href="examples/xfleg.c">example</a>)<li>[15.5]
|
|
<a href="recipes/mrqmin.c"><b>mrqmin</b></a> nonlinear least-squares fit, Marquardt's method
|
|
(<a href="examples/xmrqmin.c">example</a>)<li>[15.5]
|
|
<a href="recipes/mrqcof.c"><b>mrqcof</b></a> used by MRQMIN to evaluate coefficients
|
|
(<a href="examples/xmrqcof.c">example</a>)<li>[15.5]
|
|
<a href="recipes/fgauss.c"><b>fgauss</b></a> fit a sum of Gaussians using MRQMIN
|
|
(<a href="examples/xfgauss.c">example</a>)<li>[15.7]
|
|
<a href="recipes/medfit.c"><b>medfit</b></a> fit data to a straight line robustly, least absolute deviation
|
|
(<a href="examples/xmedfit.c">example</a>)<li>[15.7]
|
|
<a href="recipes/rofunc.c"><b>rofunc</b></a> fit data robustly, used by MEDFIT
|
|
(<a href="examples/xrofunc.c">example</a>)</menu>
|
|
<h3><a name="C16"></A><A HREF="toc.htm#C16">Chapter
|
|
16</a></h3>
|
|
<menu>
|
|
<li>[16.1]
|
|
<a href="recipes/rk4.c"><b>rk4</b></a> integrate one step of ODEs, fourth-order Runge-Kutta
|
|
(<a href="examples/xrk4.c">example</a>)<li>[16.1]
|
|
<a href="recipes/rkdumb.c"><b>rkdumb</b></a> integrate ODEs by fourth-order Runge-Kutta
|
|
(<a href="examples/xrkdumb.c">example</a>)<li>[16.2]
|
|
<a href="recipes/rkqs.c"><b>rkqs</b></a> integrate one step of ODEs with accuracy monitoring
|
|
(<a href="examples/xrkqs.c">example</a>)<li>[16.2]
|
|
<a href="recipes/rkck.c"><b>rkck</b></a> Cash-Karp-Runge-Kutta step used by rkqs
|
|
<li>[16.2]
|
|
<a href="recipes/odeint.c"><b>odeint</b></a> integrate ODEs with accuracy monitoring
|
|
(<a href="examples/xodeint.c">example</a>)<li>[16.3]
|
|
<a href="recipes/mmid.c"><b>mmid</b></a> integrate ODEs by modified midpoint method
|
|
(<a href="examples/xmmid.c">example</a>)<li>[16.4]
|
|
<a href="recipes/bsstep.c"><b>bsstep</b></a> integrate ODEs, Bulirsch-Stoer step
|
|
(<a href="examples/xbsstep.c">example</a>)<li>[16.4]
|
|
<a href="recipes/pzextr.c"><b>pzextr</b></a> polynomial extrapolation, used by BSSTEP
|
|
(<a href="examples/xpzextr.c">example</a>)<li>[16.4]
|
|
<a href="recipes/rzextr.c"><b>rzextr</b></a> rational function extrapolation, used by BSSTEP
|
|
(<a href="examples/xrzextr.c">example</a>)<li>[16.5]
|
|
<a href="recipes/stoerm.c"><b>stoerm</b></a> integrate conservative second-order ODEs
|
|
(<a href="examples/xstoerm.c">example</a>)<li>[16.6]
|
|
<a href="recipes/stiff.c"><b>stiff</b></a> integrate stiff ODEs by fourth-order Rosenbrock
|
|
(<a href="examples/xstiff.c">example</a>)<li>[16.6]
|
|
<a href="recipes/jacobn.c"><b>jacobn</b></a> sample Jacobian routine for stiff
|
|
<li>[16.6]
|
|
<a href="recipes/jacobn.c"><b>derivs</b></a> sample derivatives routine for stiff
|
|
<li>[16.6]
|
|
<a href="recipes/simpr.c"><b>simpr</b></a> integrate stiff ODEs by semi-implicit midpoint rule
|
|
(<a href="examples/xsimpr.c">example</a>)<li>[16.6]
|
|
<a href="recipes/stifbs.c"><b>stifbs</b></a> integrate stiff ODEs, Bulirsch-Stoer step
|
|
(<a href="examples/xstifbs.c">example</a>)</menu>
|
|
<h3><a name="C17"></A><A HREF="toc.htm#C17">Chapter
|
|
17</a></h3>
|
|
<menu>
|
|
<li>[17.1]
|
|
<a href="recipes/shoot.c"><b>shoot</b></a> solve two point boundary value problem by shooting
|
|
<li>[17.2]
|
|
<a href="recipes/shootf.c"><b>shootf</b></a> ditto, by shooting to a fitting point
|
|
<li>[17.3]
|
|
<a href="recipes/solvde.c"><b>solvde</b></a> two point boundary value problem, solve by relaxation
|
|
<li>[17.3]
|
|
<a href="recipes/bksub.c"><b>bksub</b></a> backsubstitution, used by SOLVDE
|
|
<li>[17.3]
|
|
<a href="recipes/pinvs.c"><b>pinvs</b></a> diagonalize a sub-block, used by SOLVDE
|
|
<li>[17.3]
|
|
<a href="recipes/red.c"><b>red</b></a> reduce columns of a matrix, used by SOLVDE
|
|
<li>[17.4]
|
|
<a href="recipes/sfroid.c"><b>sfroid</b></a> spheroidal functions by method of SOLVDE
|
|
<li>[17.4]
|
|
<a href="recipes/difeq.c"><b>difeq</b></a> spheroidal matrix coefficients, used by SFROID
|
|
<li>[17.4]
|
|
<a href="recipes/sphoot.c"><b>sphoot</b></a> spheroidal functions by method of shoot
|
|
<li>[17.4]
|
|
<a href="recipes/sphfpt.c"><b>sphfpt</b></a> spheroidal functions by method of shootf
|
|
(<a href="examples/xsphfpt.c">example</a>)</menu>
|
|
<h3><a name="C18"></A><A HREF="toc.htm#C18">Chapter
|
|
18</a></h3>
|
|
<menu>
|
|
<li>[18.1]
|
|
<a href="recipes/fred2.c"><b>fred2</b></a> solve linear Fredholm equations of the second kind
|
|
(<a href="examples/xfred2.c">example</a>)<li>[18.1]
|
|
<a href="recipes/fredin.c"><b>fredin</b></a> interpolate solutions obtained with fred2
|
|
(<a href="examples/xfredin.c">example</a>)<li>[18.2]
|
|
<a href="recipes/voltra.c"><b>voltra</b></a> linear Volterra equations of the second kind
|
|
(<a href="examples/xvoltra.c">example</a>)<li>[18.3]
|
|
<a href="recipes/wwghts.c"><b>wwghts</b></a> quadrature weights for an arbitrarily singular kernel
|
|
<li>[18.3]
|
|
<a href="recipes/kermom.c"><b>kermom</b></a> sample routine for moments of a singular kernel
|
|
<li>[18.3]
|
|
<a href="recipes/quadmx.c"><b>quadmx</b></a> sample routine for a quadrature matrix
|
|
<li>[18.3]
|
|
<a href="recipes/fredex.c"><b>fredex</b></a> example of solving a singular Fredholm equation
|
|
</menu>
|
|
<h3><a name="C19"></A><A HREF="toc.htm#C19">Chapter
|
|
19</a></h3>
|
|
<menu>
|
|
<li>[19.5]
|
|
<a href="recipes/sor.c"><b>sor</b></a> elliptic PDE solved by successive overrelaxation method
|
|
(<a href="examples/xsor.c">example</a>)<li>[19.6]
|
|
<a href="recipes/mglin.c"><b>mglin</b></a> linear elliptic PDE solved by multigrid method
|
|
(<a href="examples/xmglin.c">example</a>)<li>[19.6]
|
|
<a href="recipes/rstrct.c"><b>rstrct</b></a> half-weighting restriction, used by mglin, mgfas
|
|
<li>[19.6]
|
|
<a href="recipes/interp.c"><b>interp</b></a> bilinear prolongation, used by mglin, mgfas
|
|
<li>[19.6]
|
|
<a href="recipes/addint.c"><b>addint</b></a> interpolate and add, used by mglin
|
|
<li>[19.6]
|
|
<a href="recipes/slvsml.c"><b>slvsml</b></a> solve on coarsest grid, used by mglin
|
|
<li>[19.6]
|
|
<a href="recipes/relax.c"><b>relax</b></a> Gauss-Seidel relaxation, used by mglin
|
|
<li>[19.6]
|
|
<a href="recipes/resid.c"><b>resid</b></a> calculate residual, used by mglin
|
|
<li>[19.6]
|
|
<a href="recipes/copy.c"><b>copy </b></a> utility used by mglin, mgfas
|
|
<li>[19.6]
|
|
<a href="recipes/fill0.c"><b>fill0</b></a> utility used by mglin
|
|
<li>[19.6]
|
|
<a href="recipes/mgfas.c"><b>mgfas</b></a> nonlinear elliptic PDE solved by multigrid method
|
|
(<a href="examples/xmgfas.c">example</a>)<li>[19.6]
|
|
<a href="recipes/relax2.c"><b>relax2</b></a> Gauss-Seidel relaxation, used by mgfas
|
|
<li>[19.6]
|
|
<a href="recipes/slvsm2.c"><b>slvsm2</b></a> solve on coarsest grid, used by mgfas
|
|
<li>[19.6]
|
|
<a href="recipes/lop.c"><b>lop </b></a> applies nonlinear operator, used by mgfas
|
|
<li>[19.6]
|
|
<a href="recipes/matadd.c"><b>matadd</b></a> utility used by mgfas
|
|
<li>[19.6]
|
|
<a href="recipes/matsub.c"><b>matsub</b></a> utility used by mgfas
|
|
<li>[19.6]
|
|
<a href="recipes/anorm2.c"><b>anorm2</b></a> utility used by mgfas
|
|
</menu>
|
|
<h3><a name="C20"></A><A HREF="toc.htm#C20">Chapter
|
|
20</a></h3>
|
|
<menu>
|
|
<li>[20.1]
|
|
<a href="recipes/machar.c"><b>machar</b></a> diagnose computer's floating arithmetic
|
|
(<a href="examples/xmachar.c">example</a>)<li>[20.2]
|
|
<a href="recipes/igray.c"><b>igray</b></a> Gray code and its inverse
|
|
(<a href="examples/xigray.c">example</a>)<li>[20.3]
|
|
<a href="recipes/icrc1.c"><b>icrc1</b></a> cyclic redundancy checksum, used by icrc
|
|
<li>[20.3]
|
|
<a href="recipes/icrc.c"><b>icrc</b></a> cyclic redundancy checksum
|
|
(<a href="examples/xicrc.c">example</a>)<li>[20.3]
|
|
<a href="recipes/decchk.c"><b>decchk</b></a> decimal check digit calculation or verification
|
|
(<a href="examples/xdecchk.c">example</a>)<li>[20.4]
|
|
<a href="recipes/hufmak.c"><b>hufmak</b></a> construct a Huffman code
|
|
<li>[20.4]
|
|
<a href="recipes/hufapp.c"><b>hufapp</b></a> append bits to a Huffman code, used by hufmak
|
|
<li>[20.4]
|
|
<a href="recipes/hufenc.c"><b>hufenc</b></a> use Huffman code to encode and compress a character
|
|
<li>[20.4]
|
|
<a href="recipes/hufdec.c"><b>hufdec</b></a> use Huffman code to decode and decompress a character
|
|
<li>[20.5]
|
|
<a href="recipes/arcmak.c"><b>arcmak</b></a> construct an arithmetic code
|
|
<li>[20.5]
|
|
<a href="recipes/arcode.c"><b>arcode</b></a> encode or decode a character using arithmetic coding
|
|
(<a href="examples/xarcode.c">example</a>)<li>[20.5]
|
|
<a href="recipes/arcsum.c"><b>arcsum</b></a> add integer to byte string, used by arcode
|
|
<li>[20.6]
|
|
<a href="recipes/mpops.c"><b>mpops</b></a> multiple precision arithmetic, simpler operations
|
|
<li>[20.6]
|
|
<a href="recipes/mpmul.c"><b>mpmul</b></a> multiple precision multiply, using FFT methods
|
|
<li>[20.6]
|
|
<a href="recipes/mpinv.c"><b>mpinv</b></a> multiple precision reciprocal
|
|
<li>[20.6]
|
|
<a href="recipes/mpdiv.c"><b>mpdiv</b></a> multiple precision divide and remainder
|
|
<li>[20.6]
|
|
<a href="recipes/mpsqrt.c"><b>mpsqrt</b></a> multiple precision square root
|
|
<li>[20.6]
|
|
<a href="recipes/mp2dfr.c"><b>mp2dfr</b></a> multiple precision conversion to decimal base
|
|
<li>[20.6]
|
|
<a href="recipes/mppi.c"><b>mppi</b></a> multiple precision example, compute many digits of pi
|
|
(<a href="examples/xmppi.c">example</a>)</menu>
|
|
</body></html>
|